cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130481 a(n) = Sum_{k=0..n} (k mod 3) (i.e., partial sums of A010872).

Original entry on oeis.org

0, 1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72
Offset: 0

Views

Author

Hieronymus Fischer, May 29 2007

Keywords

Comments

Essentially the same as A092200. - R. J. Mathar, Jun 13 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 3, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010
2-adic valuation of A104537(n+1). - Gerry Martens, Jul 14 2015
Conjecture: a(n) is the exponent of the largest power of 2 that divides all the entries of the matrix {{3,1},{1,-1}}^n. - Greg Dresden, Sep 09 2018

Crossrefs

Programs

  • GAP
    List([0..80], n-> Int((n+1)/3) + Int(2*(n+1)/3)); # G. C. Greubel, Aug 31 2019
  • Magma
    [Floor((n+1)/3) + Floor(2*(n+1)/3): n in [0..80]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1+2*x)/((1-x^3)*(1-x)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Aug 31 2019
  • Mathematica
    a[n_]:= Floor[(n+1)/3] + Floor[2(n+1)/3]; Table[a[n], {n, 0, 80}] (* Clark Kimberling, May 28 2012 *)
    a[n_]:= IntegerExponent[A104537[n + 1], 2];
    Table[a[n], {n, 0, 80}]  (* Gerry Martens, Jul 14 2015 *)
    CoefficientList[Series[x(1+2x)/((1-x^3)(1-x)), {x, 0, 80}], x] (* Stefano Spezia, Sep 09 2018 *)
    LinearRecurrence[{1,0,1,-1},{0,1,3,3},100] (* Harvey P. Dale, Jun 14 2021 *)
  • PARI
    main(size)=my(n,k);vector(size,n,sum(k=0,n,k%3)) \\ Anders Hellström, Jul 14 2015
    
  • PARI
    first(n)=my(s); concat(0, vector(n,k,s+=k%3)) \\ Charles R Greathouse IV, Jul 14 2015
    
  • PARI
    a(n)=n\3*3+[0,1,3][n%3+1] \\ Charles R Greathouse IV, Jul 14 2015
    
  • Sage
    def A130481_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+2*x)/((1-x^3)*(1-x))).list()
    A130481_list(80) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 3*floor(n/3) + A010872(n)*(A010872(n) + 1)/2.
G.f.: x*(1 + 2*x)/((1-x^3)*(1-x)).
a(n) = n + 1 - (Fibonacci(n+1) mod 2). - Gary Detlefs, Mar 13 2011
a(n) = floor((n+1)/3) + floor(2*(n+1)/3). - Clark Kimberling, May 28 2010
a(n) = n when n+1 is not a multiple of 3, and a(n) = n+1 when n+1 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012
a(n) = n + 1 - sign((n+1) mod 3). - Wesley Ivan Hurt, Sep 25 2017
a(n) = n + (1-cos(2*(n+2)*Pi/3))/3 + sin(2*(n+2)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
a(n) = n + 1 - (n+1)^2 mod 3. - Ammar Khatab, Aug 14 2020
E.g.f.: ((1 + 3*x)*cosh(x) - (cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))*(cosh(x/2) - sinh(x/2)) + (1 + 3*x)*sinh(x))/3. - Stefano Spezia, May 28 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) + log(2)/3. - Amiram Eldar, Sep 17 2022

A138230 Expansion of (1-x)/(1 - 2*x + 4*x^2).

Original entry on oeis.org

1, 1, -2, -8, -8, 16, 64, 64, -128, -512, -512, 1024, 4096, 4096, -8192, -32768, -32768, 65536, 262144, 262144, -524288, -2097152, -2097152, 4194304, 16777216, 16777216, -33554432, -134217728, -134217728, 268435456, 1073741824, 1073741824, -2147483648, -8589934592
Offset: 0

Views

Author

Paul Barry, Mar 06 2008

Keywords

Comments

In general, the expansion of (1-x)/(1 - 2*x + (m+1)*x^2) has general term given by a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*(-m)^k = ((1+sqrt(-m))^n + (1-sqrt(-m))^n)/2.
Binomial transform of [1, 0, -3, 0, 9, 0, -27, 0, 81, 0, ...] = powers of -3 with interpolated zeros. - Philippe Deléham, Dec 02 2008

Crossrefs

Programs

  • Magma
    [2^n*Evaluate(ChebyshevFirst(n), 1/2): n in [0..30]]; // G. C. Greubel, Feb 11 2023
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,-4},{1,1},30] (* Harvey P. Dale, Nov 11 2014 *)
  • SageMath
    [2^n*chebyshev_T(n,1/2) for n in range(31)] # G. C. Greubel, Feb 11 2023

Formula

From Philippe Deléham, Nov 14 2008: (Start)
a(n) = 2*a(n-1) - 4*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A098158(n,k)*(-3)^(n-k). (End)
a(n) = Sum_{k=0..n} A124182(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 15 2008
a(n) = 2^n*cos(Pi*n/3). - Richard Choulet, Nov 19 2008
a(n) = -8*a(n-3). - Paul Curtz, Apr 22 2011
From Sergei N. Gladkovskii, Jul 27 2012: (Start)
G.f.: G(0) where G(k) = 1 + x/(1 + 2*x/(1 - 2*x - 4*x/(4*x + 1/G(k+1)))); (continued fraction).
E.g.f.: exp(x)*cos(sqrt(3)*x) = G(0) where G(k) = 1 + x/(3*k+1 + 2*x*(3*k+1)/(3*k+2 - 2*x - 4*x*(3*k+2)/(4*x + 3*(k+1)/G(k+1)))); (continued fraction). (End)
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = A088138(n+1) - A088138(n). - R. J. Mathar, Mar 04 2018
a(n) = (-1)^n*A104537(n). - R. J. Mathar, May 21 2019
a(n) = 2^(n-1)*A087204(n). - G. C. Greubel, Feb 11 2023
Sum_{n>=0} 1/a(n) = 4/3. - Amiram Eldar, Feb 14 2023

A116412 Riordan array ((1+x)/(1-2x),x(1+x)/(1-2x)).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 12, 21, 9, 1, 24, 60, 45, 12, 1, 48, 156, 171, 78, 15, 1, 96, 384, 558, 372, 120, 18, 1, 192, 912, 1656, 1473, 690, 171, 21, 1, 384, 2112, 4608, 5160, 3225, 1152, 231, 24, 1, 768, 4800, 12240, 16584, 13083, 6219, 1785, 300, 27, 1, 1536, 10752
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A003688. Diagonal sums are A116413. Product of A007318 and A116413 is A116414. Product of A007318 and A105475.
Subtriangle of triangle given by (0, 3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
1,
3, 1,
6, 6, 1,
12, 21, 9, 1,
24, 60, 45, 12, 1,
48, 156, 171, 78, 15, 1
Triangle T(n,k), 0<=k<=n, given by (0, 3, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 12, 21, 9, 1
0, 24, 60, 45, 12, 1
0, 48, 156, 171, 78, 15, 1
... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ CoefficientList[Series[(1 + x)/(1 - (y + 2) x - y x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Number triangle T(n,k)=sum{j=0..n, C(k+1,j)*C(n-j,k)2^(n-k-j)}
From Vladimir Kruchinin, Mar 17 2011: (Start)
T((m+1)*n+r-1, m*n+r-1) * r/(m*n+r) = sum(k=1..n, k/n * T((m+1)*n-k-1, m*n-1) * T(r+k-1,r-1)), n>=m>1.
T(n-1,m-1) = m/n * sum(k=1..n-m+1, k*A003945(k-1)*T(n-k-1,m-2)), n>=m>1. (End)
G.f.: (1+x)/(1-(y+2)*x -y*x^2). - Philippe Deléham, Jan 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A104537(n), A110523(n), (-2)^floor(n/2), A057079(n), A003945(n), A003688(n+1), A123347(n), A180035(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 18 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(2,0) = T(2,1) = 6, T(2,2) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 31 2013
Showing 1-3 of 3 results.