cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A105286 Numbers k such that prime(k+1) == 1 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 24, 25, 66, 168, 182, 186, 187, 188, 438, 6462, 40071, 40084, 40085, 40091, 40108, 40118, 251745, 637224, 637306, 637336, 637338, 10553441, 10553445, 10553452, 10553479, 10553515, 10553550, 10553829, 27067032, 27067054, 27067134, 69709710, 69709713, 179992838, 179993008, 3140421868, 8179002150, 55762149074, 1003652347080, 1003652347109, 1003652347112, 1003652347352, 1003652347375
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

If k is a term, then prime(k+1)^prime(k+1) is a reverse Meertens number in base prime(k+1)^((prime(k+1)-1)/k). - Chai Wah Wu, Dec 14 2022
Integers k such that A004649(k+1) = 1. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

  • Mathematica
    bb={};Do[If[1==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 200000}];bb
  • Python
    from itertools import count, islice
    from sympy import prime
    def A105286_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k: not (prime(k+1)-1)%k,count(max(startvalue,1)))
    A105286_list = list(islice(A105286_gen(),10)) # Chai Wah Wu, Dec 14 2022
  • Sage
    def A105286(max) :
        terms = []
        p = 3
        for n in range(1, max+1) :
            if (p - 1) % n == 0 : terms.append(n)
            p = next_prime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013
    

Extensions

More terms from Farideh Firoozbakht, May 12 2005
First term inserted by Eric M. Schmidt, Feb 05 2013
More terms from Michel Marcus, Dec 29 2022
a(40)-a(47) from Max Alekseyev, Aug 31 2024

A105290 Numbers k such that prime(k+1) == 4 (mod k).

Original entry on oeis.org

1, 3, 11, 13, 69, 71, 637225, 637253, 637313, 637327, 4124459, 4124685, 27067033, 179993017, 179993023, 1208198853, 8179002097, 8179002109, 55762149091
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

Integers k such that A004649(k+1) = 4. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

  • PARI
    my(n=0, p=2); while(n++, (-4+p=nextprime(p+1))%n || print1(n, ", ")) \\ M. F. Hasler, Feb 05 2009

Extensions

Missing first two terms inserted by M. F. Hasler, Feb 04 2009
a(11)-a(13) from M. F. Hasler, Feb 05 2009
a(14)-a(15) from Sean A. Irvine, Nov 25 2010
a(16) from D. S. McNeil, Nov 25 2010
a(17)-a(19) from Charles R Greathouse IV, May 05 2011

A105287 Numbers k such that prime(k+1) == 2 (mod k).

Original entry on oeis.org

1, 9, 67, 437, 441, 2615, 100349, 100353, 100359, 637197, 637305, 27066969, 27067049, 27067101, 27067113, 27067115, 179992839, 179993001, 55762149071, 382465573491
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

Integers k such that A004649(k+1) = 2. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

Extensions

First term inserted by Eric M. Schmidt, Feb 05 2013
More terms from Harvey P. Dale, May 04 2013
a(12)-a(18) from Michel Marcus, Dec 29 2022
a(19)-a(20) from Max Alekseyev, Aug 31 2024

A105288 Numbers k such that prime(k+1) == 3 (mod k).

Original entry on oeis.org

1, 2, 4, 5, 70, 440, 1055, 1058, 6461, 6466, 6469, 251752, 4124468, 27067036, 27067112, 69709709, 69709957, 465769835, 8179002104, 145935689357, 382465573490
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

Integers k such that A004649(k+1) = 3. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

  • Magma
    [1,2] cat [n: n in [1..2*10^4] | NthPrime(n+1) mod n eq 3]; // Vincenzo Librandi, May 02 2018
  • Maple
    n:= 0: p:= 2: count:= 0:
    for n from 1 while count < 13 do
    p:= nextprime(p);
    if p-3 mod n = 0 then
        count:= count+1;
      A[count]:= n;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, May 02 2018
  • Mathematica
    bb={};Do[If[3==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 200000}];bb
    Join[{1, 2}, Select[Range[2 10^7], Mod[Prime[# + 1], #]==3 &]] (* Vincenzo Librandi, May 02 2018 *)
  • Sage
    def A105288(max) :
        terms = []
        p = 3
        for n in range(1, max+1) :
            if (p - 3) % n == 0 : terms.append(n)
            p = next_prime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013
    

Extensions

First two terms inserted by Eric M. Schmidt, Feb 05 2013
a(12)-a(13) from Robert Israel, May 02 2018
a(14)-a(21) from Giovanni Resta, May 02 2018

A105451 Numbers k such that prime(k+1) == 8 (mod k).

Original entry on oeis.org

1, 5, 15, 73, 75, 100347, 637329, 27067271, 179993015, 1208198523, 55762149023, 55762149103, 382465573515
Offset: 1

Views

Author

Zak Seidov, May 02 2005

Keywords

Comments

No additional terms up to 7 million. - Harvey P. Dale, Jan 23 2012
Integers k such that A004649(k+1) = 8. - Michel Marcus, Dec 30 2022

Crossrefs

Cf. A023150 (Numbers k such that prime(n) == 8 (mod k)).

Programs

  • Mathematica
    bb={};Do[If[8==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 1000000}];bb
    Select[Range[700000],Mod[Prime[#+1],#]==8&] (* Harvey P. Dale, Jan 23 2012 *)
  • Python
    from sympy import nextprime
    def A105451(max):
        terms = []
        p = 3
        for n in range(1, max+1):
            if (p - 8) % n == 0: terms.append(n)
            p = nextprime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013

Extensions

First two terms inserted by Eric M. Schmidt, Feb 05 2013
a(8)-a(10) from Michel Marcus, Dec 29 2022
a(11)-a(13) from Max Alekseyev, Aug 31 2024

A105421 Numbers k such that prime(k + 1) == 7 (mod k).

Original entry on oeis.org

1, 2, 3, 4, 8, 30, 31, 33, 68, 72, 180, 1052, 6471, 40083, 40087, 40090, 40113, 40120, 100348, 100360, 100362, 637334, 4124588, 10553439, 10553442, 10553455, 10553478, 10553505, 10553512, 10553827, 10553849, 69709712, 69709719, 69709728, 69709958, 21338685404, 1003652347332, 1003652347349, 1003652347360, 1003652347365
Offset: 1

Views

Author

Zak Seidov, May 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[650000],Mod[Prime[#+1]-7,#]==0&] (* Harvey P. Dale, Sep 23 2021 *)
  • PARI
    isok(n) = Mod(prime(n + 1), n) == Mod(7, n); \\ Michel Marcus, Apr 05 2015
    
  • PARI
    n=0;forprime(p=3,,if(Mod(p,n++)==7,print1(n", "))) \\ Charles R Greathouse IV, Jul 23 2015
  • Python
    from sympy import nextprime
    def A105421(max):
        terms = []
        p = 3
        for n in range(1, max+1):
            if (p - 7) % n == 0: terms.append(n)
            p = nextprime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013
    

Extensions

a(1)-a(4) inserted by Eric M. Schmidt, Feb 05 2013
a(19)-a(22) from Harvey P. Dale, Apr 05 2015
a(23)-a(35) from Manfred Scheucher, Jul 23 2015
a(36) from Charles R Greathouse IV, Jul 23 2015
a(37)-a(40) from Max Alekseyev, Aug 31 2024

A066458 Numbers n such that Sum_{d runs through digits of n} d^d = pi(n) (cf. A000720).

Original entry on oeis.org

12, 22, 132, 34543, 612415, 27236725, 27236752, 311162281, 311163138, 327361548, 9237866583, 17499331217, 17499551725, 36475999489, 36475999498
Offset: 1

Views

Author

Jason Earls, Jan 02 2002

Keywords

Comments

Note that only two terms, namely 34543 & 17499331217 are primes. So we have: 34543=prime(3^3+4^4+5^5+4^4+3^3), 17499331217=prime(1^1+7^7+4^4+9^9+9^9+3^3+3^3+1^1+2^2+1^1+7^7) and there is no other such prime. - Farideh Firoozbakht, Sep 23 2005

Examples

			a(3)=132 because there are exactly 1^1+3^3+2^2 (or 32) prime numbers less than or equal to 132.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Apply[Plus, IntegerDigits[n]^IntegerDigits[n]] == PrimePi[n], Print[n]], {n, 1, 10^7} ]

Extensions

More terms from Robert G. Wilson v, Jan 15 2002
Terms 27236725 onwards from Farideh Firoozbakht, Apr 21 2005 and Sep 17 2005
Sequence completed by Farideh Firoozbakht, Sep 23 2005
Showing 1-7 of 7 results.