cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0

Views

Author

Keywords

Comments

Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
Apart from the initial 0, a subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i) [implied by Henry Bottomley's Sep 27 2006 formula], but neither does p^p divide a(i) when 0 < i < A000720(p), as then p^p > a(i). See A074107, which gives an upper bound for this sequence. - Antti Karttunen, Nov 19 2024

Examples

			0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.

Crossrefs

Denominators are A002110.
Row sums of A077011 and A258566.
Subsequence of A048103 (after the initial 0).
Cf. A053144 (a lower bound), A074107 (an upper bound).
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes), A377992 (antiderivatives of the terms > 1 of this sequence).

Programs

  • Magma
    [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ];  // Bruno Berselli, Apr 11 2011
    
  • Maple
    h:= n-> add(1/(ithprime(i)),i=1..n);
    t1:=[seq(h(n),n=0..50)];
    t1a:=map(numer,t1); # A024451
    t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
  • Mathematica
    a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18]  (* Jean-François Alcover, Apr 11 2011 *)
    f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A024451 *)
    (* Clark Kimberling, Dec 29 2011 *)
    Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
    
  • Python
    from math import prod
    from sympy import prime
    def A024451(n):
        q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
        return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022

Formula

Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
For n >= 0, A053144(n) <= a(n) <= A074107(n) < A070826(1+n).
(End)

Extensions

a(0)=0 prepended by Alois P. Heinz, Jun 26 2015

A351088 Numbers k such that A327860(k) is reachable from k by iterating the arithmetic derivative (A003415) and there are no terms with p^p-factors on the path there.

Original entry on oeis.org

0, 1, 2, 6, 7, 8, 30, 2310, 2556, 30030, 223092870
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Comments

Sequence includes also the terms for which no iterations are needed (when k is already equal to A327860(k)), thus A328110 is a subsequence. The other terms (and also 1) seem to be the intersection of primorials (A002110) with sequence A099308. This includes terms A002110(A109628(n)), whose arithmetic derivatives are in A244622.
The numbers k for which A276086(k) is reachable from k by iterating A003415 form a subsequence of this sequence, but so far only one term is known: 6, for which A276086(6) = A003415(6) = 5. (See A351228). It would be interesting to know whether there are more such terms, especially terms that require more than one iteration of A003415.
Question: The eleven known terms are all sums of distinct primorials (in A276156), i.e., contain only digits 0's and 1's in primorial base. Is this a necessary property for the terms of this sequence (and also for A328110)? - Antti Karttunen, Feb 04 2024, corrected May 11 2024.

Crossrefs

Programs

  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); \\ Like A003415, but return zero also for n that have p^p-factor(s).
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    \\ This simple program doesn't check for any hypothetical p^p-free A003415-loops (they are so rare that they are conjectured not to exist at all):
    isA351088(n) = if(!n, 1, my(g=A327860(n)); while(n>0, if(n==g, return(1)); n = A003415checked(n)); (n));

A244622 Primes in the sequence of first arithmetic derivative of primorials.

Original entry on oeis.org

5, 31, 2927, 40361, 201015517717077830328949, 13585328068403621603022853, 5692733621468679832887230172131, 3215488142498485484492183158345029261034221047849345857469577412562094716564064084247
Offset: 1

Views

Author

Freimut Marschner, Jul 02 2014

Keywords

Comments

A002110 is the sequence of primorial numbers (product of consecutive prime numbers, written prime(n)#). A024451 = numerator of Sum_{i = 1..n} 1/prime(i) is the first arithmetic derivative of prime(n)#, written (prime(n)#)'. The second arithmetic derivative of prime(n)#, written (prime(n)#)'' [= A369651(n)] is 1 if (prime(n)#)' is prime. This case leads to a selection of 13 primorials out of the first 100 primorials. The table shows the counting number n of this selection, the primorial notation, the index i used in A002110 and A024451 and the 2nd arithmetic derivative of the 13 prime numbers of A024451. Remark: i [= A109628(n)] is the prime number index of A000040.
------------------------------------------------------
n a(n) = (prime(i)#)’ i (a(n))'
------------------------------------------------------
1 (3#)’ 2 1
2 (5#)’ 3 1
3 (11#)’ 5 1
4 (13#)’ 6 1
5 (61#)’ 18 1
6 (67#)’ 19 1
7 (79#)’ 22 1
8 (211#)’ 47 1
9 (269#)’ 57 1
10 (271#)’ 58 1
11 (307#)’ 63 1
12 (349#)’ 70 1
13 (367#)’ 73 1
A-number links for A109628 and A369651 added by Antti Karttunen, Feb 08 2024

Examples

			a(1) = (3#)' = (2*3 = 6)' = 2+3 = 5.
		

Crossrefs

Programs

  • Maple
    a(1) = (prime(2)#)' = (3#)' = (6)' = 5, (5)' = 1 ; a(4) = (prime(6)#)' = (13#)' =(30030)' = 40361, (40361)' = 1.
  • Mathematica
    f[n_] := Numerator[Accumulate[Table[1/Prime[i], {i, 1, n}]]];
    Select[f[50], PrimeQ] (* Ivan N. Ianakiev, Jul 08 2019 *)
  • PARI
    lista() = {vadp = readvec("/gp/bfiles/b024451.txt"); for (i=1, #vadp, if (isprime(vadp[i]), print1(vadp[i], ", ");););} \\ Michel Marcus, Jul 05 2014

Formula

a(n) = (prime(i)#)' if (prime(i)#)'' = 1.
a(n) = (prime(i)#)' if A003415(A002110(i)) is prime or A003415(A024451(i)) = 1.
a(n) = A024451(A109628(n)). - Antti Karttunen, Feb 08 2024

A369651 The second arithmetic derivative of primorial numbers.

Original entry on oeis.org

0, 0, 1, 1, 32, 1, 1, 37712, 381596, 9835475, 36880858, 5221912091, 149759057759, 186024798, 456607833524310, 655374897748042, 32188411533060, 3002590335363139484, 1, 1, 1489192548103758778136571, 905624730150525686386253700, 1, 110832638787270947169636975150, 331748330219014906068858, 349669183443106226663011852002384
Offset: 0

Views

Author

Antti Karttunen, Jan 31 2024

Keywords

Comments

See comments in A024451.

Crossrefs

Cf. A002110, A003415, A024451, A068346, A109628 (positions of 1's).
Cf. also A368702.

Programs

Formula

a(n) = A003415(A024451(n)) = A068346(A002110(n)).

A369972 Numbers k such that (prime(k)#)' is a multiple of prime(1+k), where prime(k)# means the k-th primorial, A002110(k), and ' stands for taking the arithmetic derivative, A003415.

Original entry on oeis.org

0, 2, 7, 14, 21, 28, 261202
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2024

Keywords

Comments

Numbers k for which A024451(k) is a multiple of A000040(1+k).

Examples

			7 is included because the primorial prime(7)# = A002110(7) = 510510 has as its arithmetic derivative 510510' = A024451(7) = 716167 = 19*37693, which is divisible by the next larger prime not present in the primorial, in this case by prime(8) = 19.
		

Crossrefs

Cf. A000040, A000720, A024451, A293457 (corresponding primes), A369970, A369973 (corresponding primorials).
Cf. also A109628.

Programs

Formula

a(n) = A000720(A293457(n)) - 1.

Extensions

Found a(7) by computing it as A000720(A293457(7))-1. - Antti Karttunen, Feb 08 2024

A125707 Numbers k such that A024528(k) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 14, 15, 17, 23, 32, 36, 42, 309, 1384, 1588, 5631, 11226
Offset: 1

Views

Author

Alexander Adamchuk, Feb 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f=1;Do[p=Prime[n];f=f+1/p;g=Numerator[f];If[PrimeQ[g],Print[{n,p,g}]],{n,1,50}]

Extensions

a(14)-a(16) from Ryan Propper, Feb 11 2008
a(17)-a(18) from Michael S. Branicky, Apr 27 2025

A125708 Numbers k such that A115963(k) is prime.

Original entry on oeis.org

3, 5, 9, 43, 150, 300, 516, 1254
Offset: 1

Views

Author

Alexander Adamchuk, Feb 01 2007, Mar 01 2007

Keywords

Comments

A115963(n) is the numerator of Sum_{k=1..n} 1/prime(k)^3.
a(9) > 5000. - Michael S. Branicky, Aug 04 2024

Crossrefs

Programs

  • Mathematica
    f=0;Do[p=Prime[n];f=f+1/p^3;g=Numerator[f];If[PrimeQ[g],Print[{n,p,g}]],{n,1,50}]

Extensions

a(6) from Alexander Adamchuk, Sep 16 2010
a(7)-a(8) from Amiram Eldar, Feb 18 2019
Showing 1-7 of 7 results.