cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A113012 Numerators of convergents to 1 + 2/(3 + 4/(5 + 6/(7 + ...))).

Original entry on oeis.org

1, 5, 29, 233, 2329, 27949, 78257, 6260561, 112690097, 2253801941, 49583642701, 47600296993, 30940193045449, 866325405272573, 25989762158177189, 831672389061670049, 5655372245619356333, 1017967004211484139941, 38682746160036397317757, 1547309846401455892710281
Offset: 0

Views

Author

Eric W. Weisstein, Oct 10 2005

Keywords

Examples

			1, 5/3, 29/19, 233/151, 2329/1511, ...
		

Crossrefs

Programs

  • GAP
    List(List([0..20],n->Sum([0..n],k->(-1)^k*(1/(Product([0..Int(2*k/2)-1],i->2*k-2*i))))),NumeratorRat); # Muniru A Asiru, Apr 14 2018
  • Mathematica
    Numerator[Table[Sum[(-1)^k*1/(2k)!!,{k,0,n}],{n,1,25}]] (* Alexander Adamchuk, Jul 02 2006 *)
    f[n_] := Fold[ Last@ #2 + First@ #2/#1 &, 2n - 1, Partition[ Reverse@ Range[ 2n - 2], 2]]; Numerator[ Array[ f, 18]]  (* Robert G. Wilson v, Jul 07 2012 *)
    a[ n_] := If[ n < 0, 0, Numerator[ 1 + ContinuedFractionK[2 i, 2 i + 1, {i, 1, n}]]]; (* Michael Somos, Apr 14 2018 *)
    Table[1 + ContinuedFractionK[2 k, 2 k + 1, {k, n}], {n, 0, 20}] // Numerator (* Eric W. Weisstein, Apr 14 2018 *)
    Table[1/((Sqrt[E] Gamma[n + 2])/Gamma[n + 2, -1/2] - 1), {n, 0, 20}] // Numerator (* Eric W. Weisstein, Apr 14 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, n, j, i, [2*i, 2*i+1] [j]) ); numerator( 1 + A[2, 1] / A[1, 1]) )}; /* Michael Somos, Apr 14 2018 */
    

Formula

a(n) = Numerator(Sum_{k=0..n+1} (-1)^k*1/(2k)!!). - Alexander Adamchuk, Jul 02 2006
a(n) <= A000354(n+1). - Michael Somos, Sep 28 2017

A113013 Denominators of convergents to 1 + 2/(3 + 4/(5 + 6/(7 + ...))).

Original entry on oeis.org

1, 3, 19, 151, 1511, 18131, 50767, 4061359, 73104463, 1462089259, 32165963699, 30879325151, 20071561348151, 562003717748227, 16860111532446811, 539523569038297951, 3668760269460426067, 660376848502876692059, 25094320243109314298243, 1003772809724372571929719, 42158458008423648021048199
Offset: 0

Views

Author

Eric W. Weisstein, Oct 10 2005

Keywords

Examples

			1, 5/3, 29/19, 233/151, 2329/1511, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Fold[ Last@ #2 + First@ #2/#1 &, 2n - 1, Partition[ Reverse@ Range[ 2n - 2], 2]]; Denominator[ Array[ f, 18]] (* Robert G. Wilson v, Jul 07 2012 *)
    (* It is interesting to note that FoldList[2 #1*#2 - (-1)^#2 &, 0, Range[19]] matches many of the terms. - Robert G. Wilson v, Jul 07 2012 *)
    a[ n_] := If[ n < 0, 0, Denominator[ 1 + ContinuedFractionK[2 i, 2 i + 1, {i, 1, n}]]]; (* Michael Somos, Apr 14 2018 *)
    Table[1 + ContinuedFractionK[2 k, 2 k + 1, {k, n}], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Apr 14 2018 *)
    Table[1/((Sqrt[E] Gamma[n + 2])/Gamma[n + 2, -1/2] - 1), {n, 0, 20}] // Denominator (* Eric W. Weisstein, Apr 14 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, n, j, i, [2*i, 2*i+1] [j]) ); denominator( 1 + A[2, 1] / A[1, 1]) )}; /* Michael Somos, Apr 14 2018 */

Formula

a(n) = denominators of 1/((sqrt(e) * Gamma(n+2))/Gamma(n+2, -1/2) - 1), where Gamma(x, a) is the incomplete Gamma function. - Eric W. Weisstein, Apr 14 2018

A365307 Decimal expansion of 1/(2*e-5).

Original entry on oeis.org

2, 2, 9, 0, 6, 1, 6, 6, 9, 2, 7, 8, 5, 3, 6, 2, 4, 2, 2, 1, 0, 7, 5, 3, 3, 4, 1, 4, 5, 6, 1, 8, 4, 5, 0, 2, 5, 7, 8, 2, 0, 6, 8, 7, 3, 8, 6, 9, 0, 7, 3, 4, 6, 6, 5, 0, 5, 7, 1, 3, 1, 4, 9, 5, 0, 9, 9, 4, 1, 8, 8, 0, 3, 0, 4, 8, 7, 0, 1, 0, 8, 2, 5, 0, 1, 1, 9, 3, 9, 9
Offset: 1

Views

Author

Rok Cestnik, Aug 31 2023

Keywords

Comments

The continued fraction expansion is A081750 with initial term 5 omitted.

Examples

			2.2906166927853624221...
		

Crossrefs

Programs

  • Mathematica
    A365307 = RealDigits[N[1/(2*E-5),#+1]][[1]][[1;;-2]]&;
  • PARI
    1/(2*exp(1)-5).

Formula

Equals 2 + 1/(3 + 2/(4 + 3/(5 + 4/(6 + 5/( ... /(n+1 + n/(n+2 + ... ))))))).
From Peter Bala, Oct 23 2023: (Start)
Define s(n) = Sum_{k = 3..n} 1/k!. Then 1/(2*e - 5) = 3 - (1/2)*Sum_{n >= 3 } 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals. Cf. A073333 and A194807.
Equivalently, 1/(2*e - 5) = 3 - (1/2)*(3!/(1*5) + 4!/(5*26) + 5!/(26*157) + 6!/(157*1100) + ...), where [1, 5, 26, 157, 1100, ... ] is A185108. (End)

A367120 Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).

Original entry on oeis.org

2, 2, 2, 4, 4, 1, 2, 4, 3, 7, 9, 5, 6, 3, 4, 0, 4, 6, 7, 1, 6, 3, 8, 3, 7, 5, 4, 1, 3, 8, 4, 0, 2, 1, 9, 3, 9, 0, 6, 2, 7, 8, 8, 2, 5, 7, 0, 9, 4, 1, 0, 9, 2, 7, 1, 4, 6, 3, 2, 0, 3, 4, 2, 9, 7, 2, 0, 4, 3, 2, 0, 9, 2, 7, 5, 4, 4, 6, 5, 4, 8, 9, 9, 9, 9, 9, 6, 1, 9, 3, 5, 4, 0, 9, 8, 2, 5, 3, 7
Offset: 1

Views

Author

Rok Cestnik, Nov 13 2023

Keywords

Examples

			2.224412437956340467163837541384021939...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)
    First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* Paolo Xausa, Nov 18 2024 *)
  • PARI
    N=50;
    doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));
    ap1 = 2 / sum(k=0,N, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    ap2 = 2 / sum(k=0,N+1, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
    A367120 = digits(floor(10^n*ap1));

Formula

Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.
Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).

A130701 Decimal expansion of mu, a continued fraction first constructed from the Fibonacci numbers (A000045).

Original entry on oeis.org

1, 3, 9, 4, 1, 8, 6, 5, 5, 0, 2, 2, 8, 7, 8, 3, 6, 7, 2, 9, 0, 2, 8, 8, 9, 9, 0, 4, 1, 3, 0, 4, 0, 2, 0, 4, 5, 3, 2, 5, 5, 4, 3, 4, 1, 2, 7, 5, 3, 6, 5, 2, 9, 7, 6, 2, 2, 0, 3, 3, 4, 9, 1, 8, 7, 3, 9, 9, 4, 1, 7, 9, 8, 7, 4, 2, 7, 9, 0, 5, 7, 9, 4, 2, 9, 8, 8, 6, 9, 9, 2, 2, 3, 1, 0, 0, 4, 0, 1, 7, 6, 6, 7, 7, 4
Offset: 1

Views

Author

Robert G. Wilson v, Jul 01 2007

Keywords

Comments

1+ 1/(2 +3/(5 + 8/(13 + ... .
Cited inaccurately in the second reference because they used only the first 28 terms.
Mu's simple continued fraction: 1, 2, 1, 1, 6, 3, 1, 1, 3, 2, 2, 2, 9, 1, 1, 1, 13, 1, 1, 189, 1, 10, 2, 6, 1, 6, 1, 5, 1, 59, 4, 24, 1, 42, 2, 1, 59, 1, 1, 2, 1, ....
Mu's increasingly larger PQ's: 1, 2, 6, 9, 13, 189, 1138, 4150, 6165, 90642, 90676, 526142, 757765, 20411415, 35535156, 271384175, ..., at positions: 1, 2, 5, 13, 17, 20, 454, 529, 708, 1832, 9248, 9631, 211052, 552035, 4552470, 4928425, (9290954)....

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 171.

Crossrefs

Programs

  • Mathematica
    First@ RealDigits@ N[ Fold[ Last@#2 + First@#2/#1 &, 1, Partition[ Reverse@ Fibonacci@ Range@48, 2]], 111]

A131701 Decimal expansion of the continued fraction 4+6/(9+10/(14+15/21+...)) where the terms are the semiprimes: A001358.

Original entry on oeis.org

4, 6, 1, 9, 7, 7, 6, 8, 9, 0, 3, 3, 0, 3, 6, 8, 9, 3, 8, 0, 6, 8, 2, 1, 1, 9, 9, 6, 8, 4, 3, 7, 4, 2, 3, 8, 4, 0, 1, 7, 2, 8, 2, 5, 5, 6, 4, 4, 1, 2, 9, 2, 3, 3, 8, 9, 8, 4, 2, 0, 8, 2, 3, 2, 9, 6, 3, 7, 4, 4, 6, 3, 0, 8, 4, 4, 2, 5, 9, 6, 4, 4, 8, 6, 7, 2, 8, 7, 1, 8, 8, 0, 3, 1, 6, 6, 5, 0, 8, 2, 3, 6, 4, 2, 8
Offset: 1

Views

Author

Keywords

Examples

			4.6197768903303689380682119968437423840172825564412923389842082329...
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; lst = Select[Range@ 400, semiPrimeQ@ # &]; First@ RealDigits@ N[ Fold[ Last@ #2 + First@ #2/#1 &, 4, Partition[Reverse@ lst, 2]], 111] (* Robert G. Wilson v *)

A181050 Decimal expansion of the constant 1+3/(5+7/(9+11/(13+...))), using all odd integers in this generalized continued fraction.

Original entry on oeis.org

1, 5, 2, 4, 9, 6, 5, 3, 4, 4, 4, 1, 7, 8, 9, 4, 9, 1, 2, 8, 2, 1, 2, 2, 3, 0, 9, 4, 0, 6, 2, 5, 5, 6, 2, 3, 2, 4, 6, 8, 4, 6, 0, 4, 2, 9, 9, 9, 9, 4, 6, 8, 1, 1, 5, 3, 6, 9, 2, 1, 1, 5, 0, 9, 1, 2, 8, 2, 6, 8, 4, 4, 7, 6, 2, 0, 5, 0, 1, 7, 4, 7, 9, 7, 5, 6, 4, 9, 8, 4, 9, 4, 4, 3, 5, 0, 1, 3, 5, 4, 4, 8, 6, 9, 4
Offset: 1

Views

Author

Jonathan D. B. Hodgson, Oct 01 2010

Keywords

Comments

The (simple) continued fraction of this constant is [1;1,1,9,1,1,17,1,1,25,...], every 3rd term being of the form 8n+1.

Examples

			1.524965344417894912821223094...
		

Crossrefs

Cf. A113011.

Programs

  • Maple
    r:= (n, i)-> n+ `if`(i<1, 1, (n+2)/r(n+4, i-1)):
    s:= convert(evalf(r(1, 80)/10, 130), string):
    seq(parse(s[n+1]), n=1..120); # Alois P. Heinz, Oct 16 2011
  • Mathematica
    digits = 105; f[n_] := f[n] = Fold[#2 + (#2+2)/#1 &, 4*n+1, Range[4*n-3, 1, -4] ] // RealDigits[#, 10, digits]& // First; f[digits]; f[n = 2*digits]; While[f[n] != f[n/2], n = 2*n]; f[n] (* Jean-François Alcover, Feb 21 2014 *)
Showing 1-7 of 7 results.