cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113011 Decimal expansion of 1/(sqrt(e) - 1).

Original entry on oeis.org

1, 5, 4, 1, 4, 9, 4, 0, 8, 2, 5, 3, 6, 7, 9, 8, 2, 8, 4, 1, 3, 1, 1, 0, 3, 4, 4, 4, 4, 7, 2, 5, 1, 4, 6, 3, 8, 3, 4, 0, 4, 5, 9, 2, 3, 6, 8, 4, 1, 8, 8, 2, 1, 0, 9, 4, 7, 4, 1, 3, 6, 9, 5, 6, 6, 3, 7, 5, 4, 2, 6, 3, 9, 1, 4, 3, 3, 1, 4, 8, 0, 7, 0, 7, 1, 8, 2, 5, 7, 2, 4, 0, 8, 5, 0, 0, 7, 7, 4, 2, 2, 4
Offset: 1

Views

Author

Eric W. Weisstein, following a suggestion of Grover W. Hughes, Oct 09 2005

Keywords

Comments

Has continued fraction 1+2/(3+4/(5+6/7+...)).
Simple continued fraction is 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, 1, 1, 17, 1, {1, 4k+1, 1}, ..., . - Robert G. Wilson v, Jul 01 2007

Examples

			1.54149408253679828413110344447251463834045923684188210947413695663...
		

Crossrefs

Programs

  • Magma
    1/(Sqrt(Exp(1)) - 1); // G. C. Greubel, Apr 09 2018
  • Mathematica
    First@ RealDigits[ 1 / (Exp[1/2] - 1), 10, 111] (* Robert G. Wilson v, Jul 01 2007 *)
    f[n_] := Fold[ Last@ #2 + First@ #2/#1 &, 2n - 1, Partition[ Reverse@ Range[ 2n - 2], 2]]; RealDigits[ f[61], 10, 105][[1]] (* Robert G. Wilson v, Jul 07 2012 *)
    Rest[realDigitsRecip[Sqrt[E]-1]] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    1/(sqrt(exp(1)) - 1) \\ G. C. Greubel, Apr 09 2018
    

Formula

Equals Integral_{x = 0..oo} floor(2*x)*exp(-x) dx. - Peter Bala, Oct 09 2013
Equals 3/2 + Sum_{k>=0} tanh(1/2^(k+3))/2^(k+2). - Antonio Graciá Llorente, Jan 21 2024
Conjecture: 1/(sqrt(e) - 1) = 1 + K_{n>=1} 2*n/(4*n^2-1)/1, where K is the Gauss notation for an infinite continued fraction. In the expanded form, 1/(sqrt(e) - 1) = 1 + 2/3/(1 + 4/15/(1 + 6/35/(1 + ...))) (see Beit-Halachmi and Kaminer). - Stefano Spezia, Dec 27 2024
Equals 1/(A019774 - 1). - Hugo Pfoertner, Dec 27 2024

Extensions

Simpler definition from T. D. Noe, Oct 09 2005
Euler reference from David L. Harden, Oct 09 2005

A113012 Numerators of convergents to 1 + 2/(3 + 4/(5 + 6/(7 + ...))).

Original entry on oeis.org

1, 5, 29, 233, 2329, 27949, 78257, 6260561, 112690097, 2253801941, 49583642701, 47600296993, 30940193045449, 866325405272573, 25989762158177189, 831672389061670049, 5655372245619356333, 1017967004211484139941, 38682746160036397317757, 1547309846401455892710281
Offset: 0

Views

Author

Eric W. Weisstein, Oct 10 2005

Keywords

Examples

			1, 5/3, 29/19, 233/151, 2329/1511, ...
		

Crossrefs

Programs

  • GAP
    List(List([0..20],n->Sum([0..n],k->(-1)^k*(1/(Product([0..Int(2*k/2)-1],i->2*k-2*i))))),NumeratorRat); # Muniru A Asiru, Apr 14 2018
  • Mathematica
    Numerator[Table[Sum[(-1)^k*1/(2k)!!,{k,0,n}],{n,1,25}]] (* Alexander Adamchuk, Jul 02 2006 *)
    f[n_] := Fold[ Last@ #2 + First@ #2/#1 &, 2n - 1, Partition[ Reverse@ Range[ 2n - 2], 2]]; Numerator[ Array[ f, 18]]  (* Robert G. Wilson v, Jul 07 2012 *)
    a[ n_] := If[ n < 0, 0, Numerator[ 1 + ContinuedFractionK[2 i, 2 i + 1, {i, 1, n}]]]; (* Michael Somos, Apr 14 2018 *)
    Table[1 + ContinuedFractionK[2 k, 2 k + 1, {k, n}], {n, 0, 20}] // Numerator (* Eric W. Weisstein, Apr 14 2018 *)
    Table[1/((Sqrt[E] Gamma[n + 2])/Gamma[n + 2, -1/2] - 1), {n, 0, 20}] // Numerator (* Eric W. Weisstein, Apr 14 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, n, j, i, [2*i, 2*i+1] [j]) ); numerator( 1 + A[2, 1] / A[1, 1]) )}; /* Michael Somos, Apr 14 2018 */
    

Formula

a(n) = Numerator(Sum_{k=0..n+1} (-1)^k*1/(2k)!!). - Alexander Adamchuk, Jul 02 2006
a(n) <= A000354(n+1). - Michael Somos, Sep 28 2017

A354299 a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, denom(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).
Showing 1-3 of 3 results.