Original entry on oeis.org
0, 6, 35, 694, 26089, 1862994, 253247715, 66799608630, 34698378752226, 35781375988234520, 73534241823793715433
Offset: 0
A115505
Number of monic irreducible polynomials of degree 2 in GF(2^n)[x1,x2,x3,x4,x5].
Original entry on oeis.org
2095135, 1466014571406, 1317624575992306876, 1289520874254978952587000, 1308542555074300717818898758640, 1350326852860866917910548456417128416, 1404771351088543190017398373020865731215296
Offset: 1
A122743
Number of normalized polynomials of degree n in GF(2)[x,y].
Original entry on oeis.org
1, 6, 56, 960, 31744, 2064384, 266338304, 68451041280, 35115652612096, 35993612646875136, 73750947497819242496, 302157667927362455470080, 2475577847115856892504571904, 40562343327224770087344704323584, 1329187430965708569562959165777772544
Offset: 0
Let esp abbreviate "elementary symmetric polynomial". Then
0th esp of {2} is 1.
1st esp of {2,4} is 2+4 = 6.
2nd esp of {2,4,8} is 2*4 + 2*8 + 4*8 = 56.
- Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, in: A. López-Ortiz (Ed.), LATIN 2010: Theoretical Informatics, Proceedings of the 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010, in: Lecture Notes in Comput. Sci., vol. 6034, Springer, Berlin, Heidelberg, 2010, pp. 243-254 (Extended Abstract). Final version to appear in SIAM J. Discrete Math.
- Arnaud Bodin, Number of irreducible polynomials in several variables over finite fields, arXiv:0706.0157 [math.AC], 2007; Amer. Math. Monthly, 115 (2008), 653-660.
- Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, arXiv:0912.3312 [math.AC], 2009-2013.
Row sums of powers of two triangles
A000079.
-
[2^((n+1)*(n+2) div 2) - 2^(n*(n+1) div 2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
-
seq(2^((n*(1+n))/2)*(2^(1+n)-1), n=0..14); # Peter Luschny, Sep 19 2017
-
f[k_] := 2^k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A122743 *)
(* Clark Kimberling, Dec 29 2011 *)
-
a(n) = 2^((n+1)*(n+2)/2) - 2^(n*(n+1)/2);
vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
Comments corrected, reference added, and example edited by
Konstantin Ziegler, Dec 04 2012
A115490
Number of monic irreducible polynomials of degree 4 in GF(2^n)[x].
Original entry on oeis.org
3, 60, 1008, 16320, 261888, 4193280, 67104768, 1073725440, 17179803648, 274877644800, 4398045462528, 70368739983360, 1125899890065408, 18014398442373120, 288230375883276288, 4611686017353646080, 73786976290543239168, 1180591620700231434240, 18889465931409861378048
Offset: 1
A115478
Number of monic irreducible polynomials of degree 3 in GF(3)[x1,...,xn].
Original entry on oeis.org
8, 25520, 1742232560, 25015771681981520, 261673816513678364838549056, 5986257591281009894301357511191882167288, 898505149957215605206589914754802519619582611893609512640
Offset: 1
A115489
Number of monic irreducible polynomials of degree 3 in GF(2^n)[x].
Original entry on oeis.org
2, 20, 168, 1360, 10912, 87360, 699008, 5592320, 44739072, 357913600, 2863310848, 22906490880, 183251935232, 1466015498240, 11728124018688, 93824992215040, 750599937851392, 6004799503073280, 48038396025110528
Offset: 1
-
[-(1/3)*2^n+(1/3)*8^n: n in [1..20]]; // Vincenzo Librandi, Jul 25 2014
-
LinearRecurrence[{10,-16},{2,20},30] (* Harvey P. Dale, Sep 25 2013 *)
CoefficientList[Series[2/((8 x - 1) (2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 25 2014 *)
A115504
Number of monic irreducible polynomials of degree 1 in GF(2^n)[x1,x2,x3,x4,x5].
Original entry on oeis.org
62, 1364, 37448, 1118480, 34636832, 1090785344, 34630287488, 1103823438080, 35253226045952, 1127000493261824, 36046397799139328, 1153203048319815680, 36897992296869404672, 1180663682709764194304
Offset: 1
-
[2^n+4^n+8^n+16^n+32^n: n in [1..20]]; // Vincenzo Librandi, Jul 25 2014
-
CoefficientList[Series[-2 (31 - 1240 x + 14880 x^2 - 63488 x^3 + 81920 x^4)/((4 x - 1) (2 x - 1) (8 x - 1) (16 x - 1) (32 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 25 2014 *)
LinearRecurrence[{62,-1240,9920,-31744,32768},{62,1364,37448,1118480,34636832},20] (* Harvey P. Dale, Oct 07 2019 *)
A115458
Number of monic irreducible polynomials of degree n in GF(2)[x,y,z].
Original entry on oeis.org
1, 14, 903, 1034350, 34343703541, 72057077817486762, 19342812032942216095260047, 1329227995494773618659262698956301950, 46768052394568954962565705269783921192917309706498
Offset: 0
A115461
Number of monic irreducible polynomials of degree n in GF(3)[x,y].
Original entry on oeis.org
1, 12, 273, 25520, 6778629, 5132148528, 11368775698280, 74897449398451680, 1476178370884382958936, 87205387550224830516286800, 15450442981642705273095610563240, 8211400746584626963688710296061894800
Offset: 0
A115465
Number of monic irreducible polynomials of degree n in GF(5)[x,y].
Original entry on oeis.org
1, 30, 3410, 2330240, 7549603600, 118965950703744, 9309505329218297280, 3637689729211851543816960, 7105314552536912564123328420000, 69388718760088702173445263653542192000
Offset: 0
- Max Alekseyev, Formula for the number of monic irreducible polynomials in a finite field
- Max Alekseyev, PARI scripts for various problems
- J. von zur Gathen and K. Ziegler, Survey on counting special types of polynomials, arXiv preprint arXiv:1407.2970 [math.AC], 2014.
- Xiang-dong Hou and Gary L. Mullen, Number of Irreducible Polynomials and Pairs of Relatively Prime Polynomials in Several Variables over Finite Fields, arXiv:0811.3986 [math.NT], 2008.
- Konstantin Ziegler, Counting Classes of Special Polynomials, Doctoral Dissertation, University of Bonn, June 2014.
Showing 1-10 of 50 results.
Comments