cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A181529 Natural numbers equal to the sum of two consecutive semiprimes (A118717), but not an integer multiple of a previous term.

Original entry on oeis.org

10, 15, 19, 24, 29, 36, 43, 47, 51, 59, 67, 69, 73, 77, 85, 106, 112, 115, 127, 143, 151, 159, 167, 173, 178, 184, 187, 189, 217, 226, 233, 237, 243, 245, 262, 267, 275, 283, 291, 313, 317, 327, 355, 372, 395, 403, 411, 415, 422, 427, 447, 461, 484, 496, 502
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 27 2010

Keywords

Comments

Essentially A118717 with the multiples removed.

Examples

			A118717(16)=95 is not in the sequence since 95=5*A181529(3).
A118717(17)=100 is not in the sequence since 100=10*A181529(1).
		

Crossrefs

Cf. A118717.

Extensions

Edited and extended by Ray Chandler, Oct 31 2010

A173966 Sums of two consecutive semiprimes.

Original entry on oeis.org

19, 29, 43, 51, 67, 69, 77, 115, 171, 173, 187, 189, 237, 243, 245, 267, 283, 285, 291, 317, 355, 403, 405, 411, 427, 429, 435, 437, 507, 597, 603, 605, 653, 669, 723, 763, 787, 789, 891, 893, 907, 963, 1003, 1029, 1053, 1075, 1085, 1107, 1131, 1245, 1267
Offset: 1

Views

Author

Keywords

Comments

First 16 terms:19,29,43,51,67,69,77,115,171,173,187,189,237,243,245,267 are the same as in A157483.
These are sums of two consecutive integers which are both semiprimes, whereas A118717 are sums of two semiprimes which are adjacent (consecutive) in A001358. [From R. J. Mathar, Mar 18 2010]

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2};lst={};Do[If[f[n],If[f[n+1],AppendTo[lst,2*n+1]]],{n,7!}];lst
    Total/@Select[Partition[Select[Range[700],PrimeOmega[#]==2&],2,1],#[[2]]- #[[1]] == 1&] (* Harvey P. Dale, Jun 22 2020 *)

A370162 Semiprimes that are the sum of two successive semiprimes and also the sum of three successive semiprimes.

Original entry on oeis.org

134, 597, 614, 898, 982, 998, 1649, 2045, 2078, 2126, 2386, 2705, 2855, 2935, 3394, 3418, 3899, 5533, 5686, 5959, 6982, 7721, 8567, 8986, 9182, 9722, 9998, 10342, 10587, 10862, 10942, 11015, 11363, 11602, 11667, 11962, 13238, 13606, 14054, 14138, 14506, 14614, 15658, 15802, 15898, 16138, 16382
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Feb 26 2024

Keywords

Examples

			a(3) = 614 is a term because 614 = 2 * 307 is a semiprime, A001358(98) = 305 = 5 * 61 and A001358(99) = 309 = 3 * 103 are two successive semiprimes whose sum is 614, and A001358(65) = 203 = 7 * 29, A001358(66) = 205 = 5 * 41 and A001358(67) = 206 = 2 * 103 are three successive semiprimes whose sum is 614.
		

Crossrefs

Cf A001358, A118717. Intersection of A092192 and A131610.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    nP:= nops(P):
    SP:= 0:
    for i from 1 while P[i]^2 <= N do
      m:= ListTools:-BinaryPlace(P, N/P[i]);
      SP:= SP, op(P[i]*P[i..m]);
    od:
    SP:= sort([SP]):
    SS:= ListTools:-PartialSums(SP):
    SS2:= {seq(SS[i]-SS[i-2],i=3..nops(SS))}:
    SS3:= {seq(SS[i]-SS[i-3],i=4..nops(SS))}:
    A:=SS2 intersect SS3 intersect convert(SP,set):
    sort(convert(A,list));

A283873 Smallest number that is the sum of n successive primes and also the sum of n successive semiprimes, n > 1.

Original entry on oeis.org

24, 749, 48, 311, 690, 251, 2706, 2773, 6504, 1081, 2162, 1753, 11356, 6223, 1392, 2303, 9838, 637, 14510, 1995, 3154, 21459, 72960, 5691, 8140, 1475, 2350, 3647, 1593, 7607, 55074, 2719, 9852, 12143, 106562, 12615, 9036, 19883, 15438, 28369, 8560, 8415, 3831
Offset: 2

Views

Author

Zak Seidov, Mar 17 2017

Keywords

Comments

The sequence is non-monotone.

Examples

			a(2) = 24 = A000040(5) + A000040(6) = 11 + 13 = A001358(4) + A001358(5) = 10 + 14,
a(3) = 749 = A000040(53) + A000040(54) + A000040(55) = 241 + 251 + 257 = A001358(79) + A001358(80) + A001358(81) = 247 + 249 + 253.
		

Crossrefs

Cf. A000040 Primes, A001358 Semiprimes, A118717 Sum of two consecutive semiprimes.
Sum of k consecutive primes: A001043 k=2, A034961 k=3, A034963 k=4, A034964 k=5, A127333 k=6, A127334 k=7, A127335 k=8, A127336 k=9, A127337 k=10, A127338 k=11, A127339 k=12.

Programs

  • Maple
    issp:= n-> is(not isprime(n) and numtheory[bigomega](n)=2):
    ithsp:= proc(n) option remember; local k; for k from 1+
            `if`(n=1, 1, ithsp(n-1)) while not issp(k) do od; k
            end:
    ps:= proc(i, j) option remember;
           ithprime(j)+`if`(i=j, 0, ps(i, j-1))
         end:
    ss:= proc(i, j) option remember;
           ithsp(j)+`if`(i=j, 0, ss(i, j-1))
         end:
    a:= proc(n) option remember; local i, j, k, l, p, s;
          i, j, k, l, p, s:= 1, n, 1, n, ps(1, n), ss(1, n);
          do if p=s then return p
           elif pAlois P. Heinz, Mar 24 2017
  • Mathematica
    sp=Select[Range[4,100000],2==PrimeOmega[#]&];pr=Prime[Range[PrimePi[Max[sp]]]];
    Table[Intersection[(Total/@Partition[pr,k,1]),Total/@Partition[sp,k,1]][[1]],{k,2,100}]

Extensions

More terms from Alois P. Heinz, Mar 24 2017

A288949 Numbers that are both the sum of two consecutive primes and the sum of two consecutive semiprimes.

Original entry on oeis.org

24, 36, 100, 112, 120, 240, 288, 320, 372, 472, 532, 576, 600, 810, 828, 864, 882, 924, 990, 1088, 1104, 1164, 1180, 1208, 1236, 1284, 1360, 1392, 1482, 1508, 1560, 1584, 1620, 1632, 1692, 1740, 1818, 1900, 1920, 1938
Offset: 1

Author

Zak Seidov, Jun 20 2017

Keywords

Comments

Positions of a(n) in A001043 and A118717: {5, 4}, {7, 6}, {15, 17}, {16, 19}, {17, 21}, {30, 39}, {34, 48}, {37, 53}, {42, 60}, {51, 77}.

Examples

			24 is a term because 24 = 11+13 and 24 = 10+14.
Alternatively, 24 = A001043(5) = A118717(4), 36 = A001043(7) = A118717(6).
		

Crossrefs

Intersection of A001043 and A118717.

Programs

  • Mathematica
    sp=Select[Range[4,1000],2==PrimeOmega[#]&]; Select[Table[sp[[k]]+sp[[k+1]],{k,100}], #==(p=NextPrime[#/2,-1])+NextPrime[p]&]
    Module[{nn=2000,sp},sp=Total/@Partition[Select[Range[nn],PrimeOmega[#]==2&],2,1];Intersection[ sp,Total/@Partition[Prime[Range[nn]],2,1]]] (* Harvey P. Dale, Jul 31 2023 *)
  • PARI
    issemi(n)=bigomega(n)==2
    nextsp(x)=x=ceil(x); while(!issemi(x), x++); x
    has(n)=precprime((n-1)/2)+nextprime(n/2)==n
    list(lim)=my(v=List(),last=4,t); forfactored(n=6,nextsp(lim\2), if(vecsum(n[2][,2])==2, if(has(t=last+n[1]) && t<=lim, listput(v,t)); last=n[1])); Vec(v) \\ Charles R Greathouse IV, Feb 19 2018

A335076 Numbers that are the sum of two consecutive semiprimes and also the sum of two consecutive 3-almost primes.

Original entry on oeis.org

47, 95, 115, 134, 151, 201, 233, 285, 301, 335, 346, 368, 461, 513, 527, 541, 576, 640, 713, 787, 801, 810, 864, 907, 935, 944, 1104, 1160, 1225, 1245, 1255, 1360, 1397, 1471, 1513, 1521, 1574, 1620, 1692, 1740, 1775, 1782, 1831, 1867, 1873, 1913, 1967, 2009
Offset: 1

Author

Zak Seidov, May 22 2020

Keywords

Comments

Apparently the sequence is infinite.

Examples

			47 = 22 + 25 = A118717(8) = A001358(8) + A001358(9), and
47 = 20 + 27 = A014612(4) + A014612(5).
		

Crossrefs

Programs

  • Mathematica
    p[n_, m_] := Plus @@@ Partition[Select[Range[m], PrimeOmega[#] == n &], 2, 1]; m = 1100; Intersection[p[2, m], p[3, m]] (* Amiram Eldar, May 24 2020 *)

A288955 Integers that are the sum of two consecutive semiprimes, as well as the product of two consecutive semiprimes.

Original entry on oeis.org

24, 1482, 2805, 3596, 7917, 12765, 17157, 17822, 21170, 25122, 29913, 36278, 42230, 45582, 58539, 61503, 62997, 109886, 117986, 145542, 258055, 264710, 268323, 272994, 281957, 294306, 306362, 319790, 324318, 387506, 491397, 599838, 613085, 656091, 679758, 709806, 771762, 793877
Offset: 1

Author

Zak Seidov, Jun 20 2017

Keywords

Examples

			24 = A118717(4) = A108215(1), 1482 = A118717(223) = A108215(14).
		

Crossrefs

Cf. A001358. Intersection of A118717 and A108215.

Programs

  • Mathematica
    s = Partition[Select[Range[10^6], PrimeOmega@ # == 2 &], 2, 1]; Intersection[Map[Total, s], Map[Times @@ # &, s]] (* Michael De Vlieger, Jun 21 2017 *)

Extensions

More terms from Michel Marcus, Jun 27 2017
Showing 1-7 of 7 results.