cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A014566 Sierpiński numbers of the first kind: n^n + 1.

Original entry on oeis.org

2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0

Views

Author

Keywords

Comments

Sierpiński primes of the form n^n + 1 are {2,5,257,...} = A121270. The prime p divides a((p-1)/2) for p = {5,7,13,23,29,31,37,47,53,61,71,...} = A003628 Primes congruent to {5, 7} mod 8. p^2 divides a((p-1)/2) for prime p = {29,37,3373,...}. - Alexander Adamchuk, Sep 11 2006
n divides a(n-1) for even n, or 2n divides a(2n-1). a(2n-1)/(2n) = A124899(n) = {1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, ...}. 2^n divides a(2^n-1). A014566[2^n - 1] / 2^n = A081216[2^n - 1] = A122000[n] = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}. p+1 divides a(p) for prime p. a(p)/(p+1) = A056852[n] = {7, 521, 102943, 23775972551, 21633936185161, ...}. p^2 divides a((p-1)/2) for prime p = {29, 37, 3373} = A121999(n). - Alexander Adamchuk, Nov 12 2006

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.

Crossrefs

Programs

Formula

For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Erich Friedman

A110932 Numbers k such that 2*k^k + 1 is prime.

Original entry on oeis.org

0, 1, 12, 18, 251, 82992
Offset: 0

Views

Author

Ray G. Opao, Sep 25 2005

Keywords

Comments

As a "list of numbers such that ...", the sequence should have offset 1, but to preserve the validity of formulas referring to this sequence, the offset was set to 0 when the initial value a(0)=0 was added. - M. F. Hasler, Sep 02 2012

Crossrefs

Cf. A110931, A121270 (= primes in A014566), A088790, A160360, A160600.
The primes 2n^n+1, for k<4, n=a(k)<251, are listed at A216148(k) = A216147(a(k)). - M. F. Hasler, Sep 02 2012

Programs

  • Mathematica
    Join[{0}, Select[Range[1000], PrimeQ[2*#^# + 1] &]] (* Robert Price, Mar 27 2019 *)
  • PARI
    is_A110932(n)=ispseudoprime(n^n*2+1) \\ M. F. Hasler, Sep 02 2012

Extensions

a(5) from Serge Batalov, Apr 08 2018

A344859 a(n) is the number of divisors of n^n + 1.

Original entry on oeis.org

2, 2, 2, 6, 2, 8, 8, 16, 8, 16, 8, 96, 16, 32, 48, 160, 4, 12, 288, 48, 8, 64, 16, 512, 64, 128, 32, 3072, 64, 128, 1024, 384, 16, 2048, 64, 18432, 32, 128, 192, 512, 768, 64, 1024, 384, 256, 16384, 256, 2560, 64, 192, 1024, 3072, 32, 512, 16384, 4096, 128, 8192, 8192, 768, 4096, 256, 128, 1376256, 16
Offset: 0

Views

Author

Seiichi Manyama, May 31 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := DivisorSigma[0, n^n + 1]; Array[a, 45, 0] (* Amiram Eldar, May 31 2021 *)
  • PARI
    a(n) = numdiv(n^n+1);

Formula

a(n) = A000005(A014566(n)).

A085723 Number of prime divisors of n^n+1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 5, 3, 4, 3, 7, 4, 5, 6, 9, 2, 4, 9, 6, 3, 6, 4, 10, 6, 7, 5, 12, 6, 7, 10, 11, 4, 11, 6, 15, 5, 7, 8, 10, 10, 6, 10, 9, 8, 14, 8, 13, 6, 8, 10, 12, 5, 10, 14, 13, 7, 13, 13, 10, 12, 8, 7, 24, 4, 12, 8, 8, 7, 17, 10, 11, 12, 4, 8, 25, 7, 9, 14, 10, 5, 12, 7, 13, 8
Offset: 1

Views

Author

Jason Earls, Jul 20 2003

Keywords

Comments

16^16+1 = 274177 * 67280421310721 is a semiprime. Where is the next?
a(73) >= 4. - Donovan Johnson, Sep 27 2010
According to factordb there are currently no other known candidates for semiprimes, with 781^781+1 being the largest fully factored number of this form. - Hugo Pfoertner, Aug 24 2019

Examples

			a(3) = 3: 3^3 + 1 = 28 = 2^2 * 7.
a(4) = 1: 4^4 + 1 = 257 is prime.
a(5) = 3: 5^5 + 1 = 3126 = 2 * 3 * 521.
		

Crossrefs

Programs

  • PARI
    for(k=1, 60, print1(bigomega(k^k+1),", ")) \\ Hugo Pfoertner, Aug 24 2019

Formula

a(n) = A001222(A014566(n)). - Amiram Eldar, Sep 27 2024

Extensions

More terms from Ray G. Opao, Aug 25 2004
Corrected 8 existing terms and a(46)-a(72) from Donovan Johnson, Sep 27 2010
a(73)-a(84) added by Hugo Pfoertner, Aug 24 2019

A301641 Primes of form 4*k^k + 1.

Original entry on oeis.org

5, 17, 109, 3294173, 355271367880050092935562133789062501
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

No additional terms through k=1000. - Harvey P. Dale, Oct 06 2023

Crossrefs

Primes of form b*k^k + 1: A121270 (b=1), A216148 (b=2), A301644 (b=3), this sequence (b=4), A301642 (b=16).

Programs

  • Maple
    a:=k->`if`(isprime(4*k^k+1),4*k^k+1,NULL): seq(a(k),k=1..1400); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Select[Table[4n^n+1,{n,30}],PrimeQ] (* Harvey P. Dale, Oct 06 2023 *)

Formula

a(n) = 4*A301519(n+1)^A301519(n+1) + 1.

A160600 Numbers k such that 3*(2k)^(2k)+1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 143, 225
Offset: 1

Views

Author

M. F. Hasler, Jul 10 2009

Keywords

Comments

This corresponds to the numbers such that 3m^m+1 is prime, but these must all be even, m=2k, and therefore it is more natural to record the sequence of k=m/2.
Next term > 15000. - Matevz Markovic, Oct 09 2012

Examples

			a(1) = 1, because 2^2*3+1 = 13 is the smallest prime of this form.
a(2) = 2, because 4^4*3+1 = 769 is the next smallest prime of this form. a(3) = 3, because 6^6*3+1 = 139969 is again a prime.
		

Crossrefs

Cf. A160360 (3n^n+2 is prime), A121270 = primes among Sierpinski numbers A014566(n)=n^n+1; A216148 = A216147(A110932): primes 2n^n+1; A088790, A065798.

Programs

  • Maple
    q:= k-> isprime(3*(2*k)^(2*k)+1):
    select(q, [$1..225])[];  # Alois P. Heinz, Aug 04 2025
  • PARI
    for(i=1,9999,ispseudoprime(i^i*3+1)&print1(i/2,","))

A301642 Primes of form 16*k^k + 1.

Original entry on oeis.org

17, 433, 746497, 142657607172097
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

The next term is too large to include.
The next term a(5) has 108 digits; a(6) has 166 digits; a(7) has 170 digits. - Harvey P. Dale, Aug 23 2019

Crossrefs

Primes of form b*k^k + 1: A121270 (b=1), A216148 (b=2), A301644 (b=3), A301641 (b=4), this sequence (b=16).
Cf. A301522.

Programs

  • Mathematica
    Select[Table[16*k^k+1,{k,20}],PrimeQ] (* Harvey P. Dale, Aug 23 2019 *)

Formula

a(n) = 16*A301522(n+1)^A301522(n+1) + 1.

A301644 Primes of form 3*k^k + 1.

Original entry on oeis.org

13, 769, 139969, 30000000001
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

The next term is too large to include.
The next term (a(5)) has 703 digits. - Harvey P. Dale, Sep 04 2018

Crossrefs

Primes of form b*k^k + 1: A121270 (b=1), A216148 (b=2), this sequence (b=3), A301641 (b=4), A301642 (b=16).
Cf. A160600.

Programs

  • Mathematica
    Select[Table[3*k^k+1,{k,500}],PrimeQ] (* Harvey P. Dale, Sep 04 2018 *)

Formula

a(n) = 3*(2*A160600(n))^(2*A160600(n)) + 1.

A070855 Smallest prime of the form k*n^n + 1.

Original entry on oeis.org

2, 5, 109, 257, 37501, 139969, 3294173, 167772161, 3874204891, 30000000001, 24536803672547, 17832200896513, 12115004263690121, 344472211592298497, 12261028930664062501, 221360928884514619393, 6617922095090694113417
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Comments

By Linnik's theorem, a(n) = O(n^(Ln)) for some effectively computable L.
For more terms, see A175763.

Crossrefs

Programs

  • Mathematica
    sp[n_]:=Module[{n2=n^n,k=1},While[!PrimeQ[k*n2+1],k++];k*n2+1]; Array[ sp,20] (* Harvey P. Dale, Jul 06 2014 *)

Extensions

More terms from Don Reble, May 16 2002
Comments and b-file from Charles R Greathouse IV, Aug 30 2010

A269836 Primes p of the form k^(2*k) + 1.

Original entry on oeis.org

2, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2016

Keywords

Comments

Prime terms from A167436.
Also primes p of the form (k^2)^k + 1.
Corresponding values of k: 1, 2, 4, ...; if a(4) exists, k must be larger than 1024.

Examples

			65537 = 4^8 + 1 = 16^4 + 1.
		

Crossrefs

Cf. A121270 (primes of the form k^k + 1), A167436 (n^(2*n) + 1).

Programs

  • Magma
    [n^(2*n) + 1: n in [1..700] | IsPrime(n^(2*n) + 1)];
  • Mathematica
    Select[Table[n^(2n)+1,{n,20}],PrimeQ] (* Harvey P. Dale, Apr 01 2021 *)
Showing 1-10 of 11 results. Next