A339399 Pairwise listing of the partitions of k into two parts (s,t), with 0 < s <= t ordered by increasing values of s and where k = 2,3,... .
1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 2, 4, 3, 3, 1, 6, 2, 5, 3, 4, 1, 7, 2, 6, 3, 5, 4, 4, 1, 8, 2, 7, 3, 6, 4, 5, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 1, 13, 2, 12, 3, 11
Offset: 1
Examples
[1,9] [1,7] [1,8] [2,8] [1,5] [1,6] [2,6] [2,7] [3,7] [1,3] [1,4] [2,4] [2,5] [3,5] [3,6] [4,6] [1,1] [1,2] [2,2] [2,3] [3,3] [3,4] [4,4] [4,5] [5,5] k 2 3 4 5 6 7 8 9 10 -------------------------------------------------------------------------- k Nondecreasing partitions of k -------------------------------------------------------------------------- 2 1,1 3 1,2 4 1,3,2,2 5 1,4,2,3 6 1,5,2,4,3,3 7 1,6,2,5,3,4 8 1,7,2,6,3,5,4,4 9 1,8,2,7,3,6,4,5 10 1,9,2,8,3,7,4,6,5,5 ...
Programs
-
Mathematica
t[n_] := Flatten[Reverse /@ IntegerPartitions[n, {2}]]; Array[t, 14, 2] // Flatten (* Amiram Eldar, Dec 03 2020 *) Table[(1 + (-1)^n) (1 + Floor[Sqrt[2 n - 1 - (-1)^n]])/2 - ((2 n + 1 - (-1)^n)/2 - 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}] (* Wesley Ivan Hurt, Dec 04 2020 *)
-
PARI
row(n) = vector(n\2, i, [i, n-i]); tabf(nn) = for (n=2, nn, print(row(n))); \\ Michel Marcus, Dec 03 2020
Formula
a(n) = (1+(-1)^n)*(1+floor(sqrt(2*n-1-(-1)^n)))/2-((2*n+1-(-1)^n)/2-2 *Sum_{k=1..floor(sqrt(2*n-2-(-1)^n)-1)} floor((k+1)/2))*(-1)^n/2.
Comments