cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137491 Numbers with 28 divisors.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 3264, 3520, 3648, 4160, 4416, 4928, 5440, 5568, 5824, 5832, 5952, 6080, 7104, 7290, 7360, 7616, 7872, 8000, 8256, 8512, 9024, 9152, 9280, 9920, 10176, 10206, 10304, 11328, 11712, 11840, 11968, 12864, 12992, 13120
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^27 (subset of A122968), p*q^13, p*q*r^6 (A179672) or p^3*q^6 (A179694), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 28.

A122971 30th powers: a(n) = n^30.

Original entry on oeis.org

0, 1, 1073741824, 205891132094649, 1152921504606846976, 931322574615478515625, 221073919720733357899776, 22539340290692258087863249, 1237940039285380274899124224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers).

Programs

  • Mathematica
    Range[0,10]^30 (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    (A122971(n)=n^30); is_A122971(N)=ispower(N,30) \\ M. F. Hasler, Jul 24 2022
    
  • Python
    def A122971(n): return n**30
    from sympy import nextprime
    def is_A122971(N, k=30): # 2nd opt. arg to check for powers other than 30
        p = 2
        while N >= p**k:
            for e in range(N):
                if N % p: break
                N //= p
            if e % k: return False
            p = nextprime(p)
        return N < 2  #  M. F. Hasler, Jul 24 2022

Formula

Totally multiplicative sequence with a(p) = p^30 for prime p. Multiplicative sequence with a(p^e) = p^(30e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-30).
Sum_{n>=1} 1/a(n) = zeta(30) = 6892673020804*Pi^30/5660878804669082674070015625.
Sum_{n>=1} (-1)^(n+1)/a(n) = 536870911*zeta(30)/536870912 = 925118910976041358111*Pi^30/759790291646040068357842010112000000. (End)
Intersection of A000290 and A000578 and A000584. - M. F. Hasler, Jul 24 2022

A122969 28th powers: a(n) = n^28.

Original entry on oeis.org

0, 1, 268435456, 22876792454961, 72057594037927936, 37252902984619140625, 6140942214464815497216, 459986536544739960976801, 19342813113834066795298816, 523347633027360537213511521
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

Totally multiplicative sequence with a(p) = p^28 for prime p. Multiplicative sequence with a(p^e) = p^(28e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-28).
Sum_{n>=1} 1/a(n) = zeta(28) = 6785560294*Pi^28/564653660170076273671875.
Sum_{n>=1} (-1)^(n+1)/a(n) = 134217727*zeta(28)/134217728 = 65053034220152267*Pi^28/5413323669636552217067520000000. (End)

A122970 29th powers: a(n) = n^29.

Original entry on oeis.org

0, 1, 536870912, 68630377364883, 288230376151711744, 186264514923095703125, 36845653286788892983296, 3219905755813179726837607, 154742504910672534362390528, 4710128697246244834921603689, 100000000000000000000000000000, 1586309297171491574414436704891
Offset: 0

Views

Author

Keywords

Comments

The least significant digit of a(n) is the same as the least significant digit of n. - Alonso del Arte, Mar 28 2015

Crossrefs

Programs

Formula

Completely multiplicative sequence with a(p) = p^29 for prime p. Multiplicative sequence with a(p^e) = p^(29e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-29).
Sum_{n>=1} 1/a(n) = zeta(29).
Sum_{n>=1} (-1)^(n+1)/a(n) = 268435455*zeta(29)/268435456. (End)

Extensions

a(10)-a(11) from Michel Marcus, Mar 29 2015

A194561 Centered cube numbers: (n+1)^27 + n^27.

Original entry on oeis.org

1, 134217729, 7625731702715, 18022024106966971, 7468594995433310109, 1030940949674393077661, 66735852732611749389079, 2483564001592792629551895, 60567588642269318039802521, 1058149737003040059690390169, 14109994191499930367061460371
Offset: 0

Views

Author

Jonathan Vos Post, Aug 28 2011

Keywords

Comments

These are the lowest dimension of k-dimensional centered cube numbers which not only cannot be prime, but which, after the trivial a(0), always have at least 4 prime factors, because a(n) = (2n + 1) * (n^2 + n + 1) * (n^6 + 3n^5 + 12n^4 + 19n^3 + 15n^2 + 6n + 1) * (n^18 + 9n^17 + 117n^16 + 732n^15 + 2934n^14 + 8442n^13 + 18480n^12 + 31788n^11 + 43749n^10 + 48619n^9 + 43758n^8 + 31824n^7 + 18564n^6 + 8568n^5 + 3060n^4 + 816n^3 + 153n^2 + 18n + 1).

Examples

			The minimum nontrivial number of prime factors first appears at a(2) = 7625731702715 = 5 * 7 * 577 * 377604937.
		

Crossrefs

Programs

Extensions

a(8)-a(10) from Andrew Howroyd, Feb 05 2018
Showing 1-5 of 5 results.