cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096268 Period-doubling sequence (or period-doubling word): fixed point of the morphism 0 -> 01, 1 -> 00.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

Take highest power of 2 dividing n (A007814(n+1)), read modulo 2.
For the scale-invariance properties see Hendriks et al., 2012.
This is the sequence that results from the ternary Thue-Morse sequence (A036577) if all twos in that sequence are replaced by zeros. - Nathan Fox, Mar 12 2013
This sequence can be used to draw the Von Koch snowflake with a suitable walk in the plane. Start from the origin then the n-th step is "turn +Pi/3 if a(n)=0 and turn -2*Pi/3 if a(n)=1" (see link for a plot of the first 200000 steps). - Benoit Cloitre, Nov 10 2013
1 iff the number of trailing zeros in the binary representation of n+1 is odd. - Ralf Stephan, Nov 11 2013
Equivalently, with offset 1, the characteristic function of A036554 and an indicator for the A003159/A036554 classification of positive integers. - Peter Munn, Jun 02 2020

Examples

			Start: 0
Rules:
  0 --> 01
  1 --> 00
-------------
0:   (#=1)
  0
1:   (#=2)
  01
2:   (#=4)
  0100
3:   (#=8)
  01000101
4:   (#=16)
  0100010101000100
5:   (#=32)
  01000101010001000100010101000101
6:   (#=64)
  0100010101000100010001010100010101000101010001000100010101000100
7:   (#=128)
  010001010100010001000101010001010100010101000100010001010100010001000101010...
[_Joerg Arndt_, Jul 06 2011]
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Not the same as A073059!
Swapping 0 and 1 gives A035263.
Cf. A056832, A123087 (partial sums).
With offset 1, classification indicator for A003159/A036554.
Also with offset 1: A007814 mod 2 (cf. A096271 for mod 3), A048675 mod 2 (cf. A332813 for mod 3), A059975 mod 2.

Programs

  • Haskell
    a096268 = (subtract 1) . a056832 . (+ 1)
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Magma
    [Valuation(n+1, 2) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 20 2016
    
  • Maple
    nmax:=104: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := p mod 2 od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 02 2013
    # second Maple program:
    a:= proc(n) a(n):= `if`(n::even, 0, 1-a((n-1)/2)) end:
    seq(a(n), n=0..125);  # Alois P. Heinz, Mar 20 2019
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {1}, 7] (* Robert G. Wilson v, Mar 05 2005 *)
    {{0}}~Join~SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 0}}, {1}, 6] // Flatten (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    a(n)=valuation(n+1,2)%2 \\ Ralf Stephan, Nov 11 2013
    
  • Python
    def A096268(n): return (~(n+1)&n).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

Recurrence: a(2*n) = 0, a(4*n+1) = 1, a(4*n+3) = a(n). - Ralf Stephan, Dec 11 2004
The recurrence may be extended backwards, with a(-1) = 1. - S. I. Ben-Abraham, Apr 01 2013
a(n) = 1 - A035263(n-1). - Reinhard Zumkeller, Aug 16 2006
Dirichlet g.f.: zeta(s)/(1+2^s). - Ralf Stephan, Jun 17 2007
Let T(x) be the g.f., then T(x) + T(x^2) = x^2/(1-x^2). - Joerg Arndt, May 11 2010
Let 2^k||n+1. Then a(n)=1 if k is odd, a(n)=0 if k is even. - Vladimir Shevelev, Aug 25 2010
a(n) = A007814(n+1) mod 2. - Robert G. Wilson v, Jan 18 2012
a((2*n+1)*2^p-1) = p mod 2, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 02 2013
a(n) = A056832(n+1) - 1. - Reinhard Zumkeller, Jul 29 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/3. = Amiram Eldar, Sep 18 2022

Extensions

Corrected by Jeremy Gardiner, Dec 12 2004
More terms from Robert G. Wilson v, Feb 26 2005

A050292 a(2n) = 2n - a(n), a(2n+1) = 2n + 1 - a(n) (for n >= 0).

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 37, 38, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 47, 47, 48, 48, 49, 49, 50, 51, 52, 52, 53, 54
Offset: 0

Views

Author

Keywords

Comments

Note that the first equation implies a(0)=0, so there is no need to specify an initial value.
Maximal cardinality of a double-free subset of {1, 2, ..., n}, or in other words, maximal size of a subset S of {1, 2, ..., n} with the property that if x is in S then 2x is not. a(0)=0 by convention.
Least k such that a(k)=n is equal to A003159(n).
To construct the sequence: let [a, b, c, a, a, a, b, c, a, b, c, ...] be the fixed point of the morphism a -> abc, b ->a, c -> a, starting from a(1) = a, then write the indices of a, b, c, that of a being written twice; see A092606. - Philippe Deléham, Apr 13 2004
Number of integers from {1,...,n} for which the subtraction of 1 changes the parity of the number of 1's in their binary expansion. - Vladimir Shevelev, Apr 15 2010
Number of integers from {1,...,n} the factorization of which over different terms of A050376 does not contain 2. - Vladimir Shevelev, Apr 16 2010
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. Each number n appears A026465(n+1) times. - Philippe Deléham, Oct 19 2011
Another way of stating the last two comments from Philippe Deléham: the sequence can be obtained by replacing each term of the Thue-Morse sequence A010060 by the run number that term is in. - N. J. A. Sloane, Dec 31 2013

Examples

			Examples for n = 1 through 8: {1}, {1}, {1,3}, {1,3,4}, {1,3,4,5}, {1,3,4,5}, {1,3,4,5,7}, {1,3,4,5,7}.
Binary expansion of 5 is 101, so Sum{i>=0} b_i*(-1)^i = 2. Therefore a(5) = 10/3 + 2/3 = 4. - _Vladimir Shevelev_, Apr 15 2010
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.26.
  • Wang, E. T. H. "On Double-Free Sets of Integers." Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Haskell
    a050292 n = a050292_list !! (n-1)
    a050292_list = scanl (+) 0 a035263_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Maple
    A050292:=n->add((-1)^k*floor(n/2^k), k=0..n); seq(A050292(n), n=0..100); # Wesley Ivan Hurt, Feb 14 2014
  • Mathematica
    a[n_] := a[n] = If[n < 2, 1, n - a[Floor[n/2]]]; Table[ a[n], {n, 1, 75}]
    Join[{0},Accumulate[Nest[Flatten[#/.{0->{1,1},1->{1,0}}]&,{0},7]]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    a(n)=if(n<2,1,n-a(floor(n/2)))
    
  • Python
    from sympy.ntheory import digits
    def A050292(n): return ((n<<1)+sum((0,1,-1,0)[i] for i in digits(n,4)[1:]))//3 # Chai Wah Wu, Jan 30 2025

Formula

Partial sums of A035263. Close to (2/3)*n.
a(n) = A123087(2*n) = n - A123087(n). - Max Alekseyev, Mar 05 2023
From Benoit Cloitre, Nov 24 2002: (Start)
a(1)=1, a(n) = n - a(floor(n/2));
a(n) = (2/3)*n + (1/3)*A065359(n);
more generally, for m>=0, a(2^m*n) - 2^m*a(n) = A001045(m)*A065359(n) where A001045(m) = (2^m - (-1)^m)/3 is the Jacobsthal sequence;
a(A039004(n)) = (2/3)*A039004(n);
a(2*A039004(n)) = 2*a(A039004(n));
a(A003159(n)) = n;
a(A003159(n)-1) = n-1;
a(n) mod 2 = A010060(n) the Thue-Morse sequence;
a(n+1) - a(n) = A035263(n+1);
a(n+2) - a(n) = abs(A029884(n)).
(End)
G.f.: (1/(x-1)) * Sum_{i>=0} (-1)^i*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*floor(n/2^k). - Benoit Cloitre, Jun 03 2003
a(A091785(n)) = 2n; a(A091855(n)) = 2n-1. - Philippe Deléham, Mar 26 2004
a(2^n) = (2^(n+1) + (-1)^n)/3. - Vladimir Shevelev, Apr 15 2010
If n = Sum_{i>=0} b_i*2^i is the binary expansion of n, then a(n) = 2n/3 + (1/3)Sum_{i>=0} b_i*(-1)^i. Thus a(n) = 2n/3 + O(log(n)). - Vladimir Shevelev, Apr 15 2010
Moreover, the equation a(3m)=2m has infinitely many solutions, e.g., a(3*2^k)=2*2^k; on the other hand, a((4^k-1)/3)=(2*(4^k-1))/9+k/3, i.e., limsup |a(n)-2n/3| = infinity. - Vladimir Shevelev, Feb 23 2011
a(n) = Sum_{k>=0} A030308(n,k)*A001045(k+1). - Philippe Deléham, Oct 19 2011
From Peter Bala, Feb 02 2013: (Start)
Product_{n >= 1} (1 + x^((2^n - (-1)^n)/3 )) = (1 + x)^2(1 + x^3)(1 + x^5)(1 + x^11)(1 + x^21)... = 1 + sum {n >= 1} x^a(n) = 1 + 2x + x^2 + x^3 + 2x^4 + 2x^5 + .... Hence this sequence lists the numbers representable as a sum of distinct Jacobsthal numbers A001045 = [1, 1', 3, 5, 11, 21, ...], where we distinguish between the two occurrences of 1 by writing them as 1 and 1'. For example, 9 occurs twice in the present sequence because 9 = 5 + 3 + 1 and 9 = 5 + 3 + 1'. Cf. A197911 and A080277. See also A120385.
(End)

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
Corrected and extended by Reinhard Zumkeller, Aug 16 2006
Extended with formula by Philippe Deléham, Oct 19 2011
Entry revised to give a simpler definition by N. J. A. Sloane, Jan 03 2014

A186444 The count of numbers <= n for which 3 is an infinitary divisor.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19
Offset: 1

Views

Author

Vladimir Shevelev, Feb 21 2011

Keywords

Comments

For the definition of infinitary divisors, see A037445.
The sequence is the partial sums of the characteristic function of the numbers with 3 as one of the infinitary divisors; these are 3, 6, 12, 15, 21, 24, 27, 30 etc, apparently shown in A145204. - R. J. Mathar, Feb 28 2011

Crossrefs

Partial sums of A182581.

Programs

  • Maple
    A186444 := proc(n) local a,k ; option remember; if n< 3 then 0; else floor(n/3) -procname(floor(n/3)) ; end if; end proc: # R. J. Mathar, Feb 28 2011

Formula

a(n) = floor(n/3) - a(floor(n/3)).
a(n) = floor(n/3) - floor(n/9) + floor(n/27) - ....
a(n) grows as n/4 as n tends to infinity.
Showing 1-3 of 3 results.