cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A130451 Number of divisors of A123193(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 8, 3, 2, 8, 2, 2, 8, 2, 8, 2, 2, 3, 2, 8, 8, 2, 2, 8, 2, 8, 2, 2, 8, 2, 5, 2, 8, 2, 2, 2, 8, 2, 8, 8, 2, 2, 8, 2, 8, 3, 2, 8, 8, 2, 8, 8, 2, 8, 2, 2, 2, 8, 8, 2, 2, 8, 2, 3, 8, 2, 8, 2, 2, 8, 8, 8, 8
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 08 2007

Keywords

Programs

  • Maple
    isFib := proc(n) local i ; for i from 1 do if combinat[fibonacci](i) > n then RETURN(false) ; elif combinat[fibonacci](i) = n then RETURN(true) ; fi ; od: end: A123193 := proc(n) option remember ; local nmin,k ; nmin := 1 : if n > 1 then nmin := A123193(n-1)+1 ; fi ; for k from nmin do if isFib( numtheory[tau](k) ) then RETURN(k) ; fi ; od: end: A130451 := proc(n) numtheory[tau](A123193(n)) ; end: seq(A130451(n),n=1..80) ; # R. J. Mathar, Nov 16 2007
  • Mathematica
    FibQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]];
    Select[DivisorSigma[0, Range[250]], FibQ] (* Jean-François Alcover, Jan 27 2024 *)

Formula

a(n)=A000005(A123193(n)). - R. J. Mathar, Nov 16 2007

Extensions

Corrected and extended by R. J. Mathar, Nov 16 2007

A000028 Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 121, 126, 127, 128, 130, 131, 132, 135, 136, 137
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000379 (its complement) give the unique solution to the problem of splitting the positive integers into two classes in such a way that products of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000069, A001969.
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
The sequence contains products of odd number of distinct terms of A050376. - Vladimir Shevelev, May 04 2010
From Vladimir Shevelev, Oct 28 2013: (Start)
Numbers m such that infinitary Moebius function of m (A064179) equals -1. This follows from the definition of A064179.
Number m is in the sequence if and only if the number k = k(m) of terms of A050376 which divide m with odd maximal exponent is odd.
For example, if m = 96, then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1, for 4 it is 2, for 16 it is 1. Thus k(96) = 3 and 96 is a term.
(End)
Positions of odd terms in A064547, A268386 and A293439. - Antti Karttunen, Nov 09 2017
Lexicographically earliest sequence of distinct nonnegative integers such that no term is the A059897 product of 2 terms. (A059897 can be considered as a multiplicative operator related to the Fermi-Dirac factorization of numbers described in A050376.) Specifying that the A059897 product be of 2 distinct terms leaves the sequence unchanged. The equivalent sequences using standard integer multiplication are A026416 (with the 2 terms specified as distinct) and A026424 (otherwise). - Peter Munn, Mar 16 2019
From Amiram Eldar, Oct 02 2024: (Start)
Numbers whose number of infinitary divisors (A037445) is not a square.
Numbers whose exponentially odious part (A367514) has an odd number of distinct prime factors, i.e., numbers k such that A092248(A367514(k)) = 1. (End)

Examples

			If k = 96 then the maximal exponent of 2 that divides 96 is 5, for 3 it is 1. 5 in binary is 101_2 and has so has a sum of binary digits of 1 + 0 + 1 = 2. 1 in binary is 1_2 and so has a sum of binary digits of 1. Thus the sum of digits of binary exponents is 2 + 1 = 3 which is odd and so 96 is a term. - _Vladimir Shevelev_, Oct 28 2013, edited by _David A. Corneth_, Mar 20 2019
		

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A133008, A000379 (complement), A000120 (binary weight function), A064547; also A066724, A026477, A050376, A084400, A268386, A293439.
Note that A000069 and A001969, also A000201 and A001950 give other decompositions of the integers into two classes.
Cf. A124010 (prime exponents).

Programs

  • Haskell
    a000028 n = a000028_list !! (n-1)
    a000028_list = filter (odd . sum . map a000120 . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 05 2011
    
  • Maple
    (Maple program from N. J. A. Sloane, Dec 20 2007) expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # returns a list of the exponents e_1, e_2, ...
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: # returns weight of binary expansion
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # returns sum of weights of exponents
    M:=400; t0:=[]; t1:=[]; for n from 1 to M do if LamMos(n) mod 2 = 0 then t0:=[op(t0),n] else t1:=[op(t1),n]; fi; od: t0; t1; # t0 is A000379, t1 is the present sequence
  • Mathematica
    iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@ (DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; q=Select[ Range[ 20000 ],iMoebiusMu[ # ]===-1& ] (* Wouter Meeussen, Dec 21 2007 *)
    Rest[Select[Range[150],OddQ[Count[Flatten[IntegerDigits[#,2]&/@ Transpose[ FactorInteger[#]][[2]]],1]]&]] (* Harvey P. Dale, Feb 25 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); sum(i=1,#f,hammingweight(f[i]))%2 \\ Charles R Greathouse IV, Aug 31 2013

Extensions

Entry revised by N. J. A. Sloane, Dec 20 2007, restoring the original definition, correcting the entries and adding a new b-file.

A026416 A 2-way classification of integers: a(1) = 1, a(2) = 2 and for n > 2, a(n) is the smallest number not of the form a(i)*a(j) for 1 <= i < j < n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 61, 66, 67, 70, 71, 73, 78, 79, 81, 83, 88, 89, 97, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 121, 127, 128, 130, 131, 135, 136, 137, 138, 139
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition is: a(1) = 1, a(2) = 2; and for n > 2, a(n) = least positive integer > a(n-1) and not of the form a(i)*a(j) for 1 <= i < j < n.
a(2) to a(29) match the initial terms of A000028. [corrected by Peter Munn, Mar 15 2019]
This has a simpler definition than A000028, but the resulting pair lacks the crucial property of the A000028/A000379 pair (see the comment in A000028). - N. J. A. Sloane, Sep 28 2007
Contains (for example) 180, so is different from A123193. - Max Alekseyev, Sep 20 2007
From Vladimir Shevelev, Apr 05 2013: (Start)
1) The sequence does not contain (for example) 140, so is different from A000028.
2) Representation of numbers which are absent in the sequence as a product of two different terms of the sequence is, generally speaking, not unique. For example, 210 = 2*105 = 3*70 = 5*42 = 7*30.
(End)
Excluding a(1) = 1, the lexicographically earliest sequence of distinct nonnegative integers such that no term is a product of 2 distinct terms. Removing the latter distinctness requirement, the sequence becomes A026424; and the equivalent sequence where the product is of 2 or more distinct terms is A050376. A000028 is similarly the equivalent sequence when A059897 is used as multiplicative operator in place of standard integer multiplication. - Peter Munn, Mar 15 2019

Examples

			a(8) is not 10 because we already have 10 = 2*5. Of course all primes appear. 16 appears because 16 is not a product of earlier terms.
		

Crossrefs

Complement of A131181. Cf. A000028, A059897.
Similar sequences with different starting conditions: A026417 (1,3), A026419 (1,4), A026420 (2,4), A026421 (3,4).
Related sequences with definition using any products (not necessarily distinct) and with various starting conditions: A026422 (1,2),A026423 (1,3), A026424 (2,3), A026425 (1,4), A026426 (2,4), A026427 (3,4).
See also families of related sequences: A026431 (excluding product-1), A026443 (excluding product+2), A026453 (excluding product-2) and references therein.

Programs

  • Mathematica
    a[1]=1; a[2]=2; a[n_] := a[n] = For[k = a[n-1] + 1, True, k++, If[ FreeQ[ Table[ a[i]*a[j], {i, 1, n-2}, {j, i+1, n-1}], k], Return[k]]]; Table[a[n], {n, 1, 101}] (* Jean-François Alcover, May 16 2013 *)
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        a, products = [1, 2], {2}
        yield from a
        for k in count(3):
            if k not in products:
                yield k
                products.update(k*a[i] for i in range(len(a)))
                a.append(k)
            products.discard(k)
    print(list(islice(agen(), 62))) # Michael S. Branicky, Jun 09 2025

Extensions

More terms from Max Alekseyev, Sep 23 2007
Edited by N. J. A. Sloane, Jul 13 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A123240 Natural numbers with number of divisors not equal to a Fibonacci number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 60, 62, 63, 64, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 106, 108, 111, 112, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 129, 132, 133, 134, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 153, 155, 156, 158, 159, 160, 161, 162, 164, 166, 168, 171, 172, 175, 176, 177, 178, 180, 183, 185, 187, 188, 192, 194, 196, 198, 200, 201, 202, 203, 204
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 07 2006

Keywords

Comments

No prime or square of a prime or square of a prime's square is included in this sequence. [From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 23 2009]

Crossrefs

Complement of A123193. Different from A000379 (e.g. contains 180).

Programs

  • Mathematica
    If[MemberQ[Fibonacci[Range[20]],DivisorSigma[0,#]],Nothing,#]&/@Range[250] (* Harvey P. Dale, Mar 18 2023 *)

A348658 Numbers whose numerator and denominator of the harmonic mean of their divisors are both Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 6, 15, 21, 28, 140, 182, 496, 546, 672, 918, 1890, 2016, 4005, 4590, 24384, 52780, 55860, 68200, 84812, 90090, 105664, 145782, 186992, 204600, 381654, 728910, 907680, 1655400, 2302344, 2862405, 3828009, 3926832, 5959440, 21059220, 33550336, 33839988, 42325920
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2021

Keywords

Comments

Terms that also Fibonacci numbers are 1, 3, 5, 21, and no more below Fibonacci(300).

Examples

			3 is a term since the harmonic mean of its divisors is 3/2 = Fibonacci(4)/Fibonacci(3).
15 is a term since the harmonic mean of its divisors is 5/2 = Fibonacci(5)/Fibonacci(3).
		

Crossrefs

Similar sequences: A074266, A123193, A272412, A272440, A348659.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; q[n_] := fibQ[Numerator[(hn = h[n])]] && fibQ[Denominator[hn]]; Select[Range[1000], q]
  • Python
    from itertools import islice
    from sympy import integer_nthroot, gcd, divisor_sigma
    def A348658(): # generator of terms
        k = 1
        while True:
            a, b = divisor_sigma(k), divisor_sigma(k,0)*k
            c = gcd(a,b)
            n1, n2 = 5*(a//c)**2-4, 5*(b//c)**2-4
            if (integer_nthroot(n1,2)[1] or integer_nthroot(n1+8,2)[1]) and (integer_nthroot(n2,2)[1] or integer_nthroot(n2+8,2)[1]):
                yield k
            k += 1
    A348658_list = list(islice(A348658(),10)) # Chai Wah Wu, Oct 28 2021

A119885 Natural numbers with number of divisors equal to a Lucas number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 01 2006

Keywords

Crossrefs

For natural numbers with number of divisors equal to a Fibonacci number, see A123193. [corrected by Matthew Vandermast, Oct 29 2008]
Cf. A000032.

Programs

A122895 Characteristic function of natural numbers with number of divisors equal to a Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 24 2006

Keywords

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := IntegerQ@ Sqrt[5*n^2+4] || IntegerQ@ Sqrt[5*n^2-4]; Boole[ fibQ /@ DivisorSigma[0, Range[103]]] (* Giovanni Resta, Mar 10 2017 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    a(n) = isfib(numdiv(n)); \\ Michel Marcus, Mar 10 2017
    
  • Python
    from sympy import divisor_count
    from sympy.ntheory.primetest import is_square
    def A122895(n): return int(is_square(m:=5*int(divisor_count(n))**2-4) or is_square(m+8)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A010056(A000005(n)). - Chayim Lowen, Aug 01 2015

Extensions

a(0)=0 removed from data by Michel Marcus, Mar 10 2017

A139588 Nonprime numbers with Fibonacci number of divisors.

Original entry on oeis.org

1, 4, 9, 16, 24, 25, 30, 40, 42, 49, 54, 56, 66, 70, 78, 81, 88, 102, 104, 105, 110, 114, 121, 128, 130, 135, 136, 138, 152, 154, 165, 169, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 258, 266, 273, 282, 285, 286, 289
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a Fibonacci number.
The union of {1}, A001248, A030514, A030626, A030631, A137484, etc. [From R. J. Mathar, Oct 26 2009]

Crossrefs

Programs

  • Mathematica
    Module[{fibs=Fibonacci[Range[20]]},Select[Range[300],!PrimeQ[#]&&MemberQ[ fibs,DivisorSigma[0,#]]&]] (* Harvey P. Dale, Jan 20 2023 *)

Formula

A123193 \ A000040. [From R. J. Mathar, Oct 23 2009]

Extensions

More terms from R. J. Mathar, Oct 23 2009

A130285 Number of divisors of A026416(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 8, 3, 2, 8, 2, 2, 8, 2, 8, 2, 2, 3, 2, 8, 8, 2, 2, 8, 2, 8, 2, 2, 8, 2, 5, 2, 8, 2, 2, 2, 8, 2, 8, 8, 2, 2, 8, 2, 8, 3, 2, 8, 8, 2, 8, 8, 2, 8, 2, 2, 2, 8, 8, 2, 2, 8, 2, 3, 8, 2, 8, 2, 18, 2, 8, 8, 8, 8, 8, 2, 14, 2, 8, 2, 2, 2, 8, 2, 2, 2, 8, 8, 8, 2, 8, 2, 20, 2
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 06 2007

Keywords

Crossrefs

Extensions

Definition clarified, comment updated and values corrected by R. J. Mathar, Apr 22 2010
Showing 1-9 of 9 results.