cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A125600 Continued fraction expansion of constant defined in A124091.

Original entry on oeis.org

2, 2, 2, 3, 2, 28, 1, 13, 1, 2, 1, 123, 1, 6, 1, 2039, 2, 2, 6, 262111, 1, 35, 1, 1, 3, 536870655, 1, 2, 1, 15, 1, 3, 3, 1, 1, 1, 2, 140737488347135, 1, 1, 1, 1, 1, 127, 1, 7, 7, 1, 5, 2, 2, 75557863725914321321983, 1, 1, 2, 5, 1, 2047, 2, 2, 5, 1, 31, 6, 1, 1, 3, 2, 2
Offset: 0

Views

Author

Robert G. Wilson v, Nov 26 2006

Keywords

Comments

Progressively larger PQ's: 2, 3, 28, 123, 2039, 262111, 536870655, 140737488347135, 75557863725914321321983, 10633823966279326983230456465062887423, 803469022129495137770981046170581301261101460862599398686719, 8543948143683640329580086824678208458410818089426611079788166431288878284152542557401710898184191, ...,.

Crossrefs

Cf. A124091 (decimal expansion), A181313 (essentially the same), A006518.

Programs

  • Mathematica
    c = N[Sum[(1/2)^Fibonacci[i], {i, 0, Infinity}], 1000]; ContinuedFraction@c

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A010056 Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
a(A000045(n)) = 1; a(A001690(n)) = 0. - Reinhard Zumkeller, Oct 10 2013
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016

Crossrefs

Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).

Programs

  • Haskell
    import Data.List (genericIndex)
    a010056 = genericIndex a010056_list
    a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
       ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Maple
    a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
    seq(a(n), n=0..144);  # Alois P. Heinz, Dec 06 2020
  • Mathematica
    Join[{1},With[{fibs=Fibonacci[Range[15]]},If[MemberQ[fibs,#],1,0]& /@Range[100]]]  (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=my(k=n^2);k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023

Formula

G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007

A000301 a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).

Original entry on oeis.org

1, 2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184, 36028797018963968, 618970019642690137449562112, 22300745198530623141535718272648361505980416, 13803492693581127574869511724554050904902217944340773110325048447598592
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Continued fraction expansion of s = A073115 = 1.709803442861291... = Sum_{k >= 0} (1/2^floor(k * phi)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, Aug 19 2002
The continued fraction expansion of the above constant s is [1; 1, 2, 2, 4, ...], that of the rabbit constant r = s-1 = A014565 is [0; 1, 2, 2, 4, ...]. - M. F. Hasler, Nov 10 2018

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 913.

Crossrefs

Programs

  • Haskell
    a000301 = a000079 . a000045
    a000301_list = 1 : scanl (*) 2 a000301_list
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [2^Fibonacci(n): n in [0..20]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    A000301 := proc(n) option remember;
                 if n < 2 then 1+n
               else A000301(n-1)*A000301(n-2)
                 fi
               end:
    seq(A000301(n), n=0..15);
  • Mathematica
    2^Fibonacci[Range[0, 14]] (* Alonso del Arte, Jul 28 2016 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jan 12 2012
    
  • SageMath
    [2^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) ~ k^phi^n with k = 2^(1/sqrt(5)) = 1.3634044... and phi the golden ratio. - Charles R Greathouse IV, Jan 12 2012
a(n) = A000304(n+3) / A010098(n+1). - Reinhard Zumkeller, Jul 06 2014
Sum_{n>=0} 1/a(n) = A124091. - Amiram Eldar, Oct 27 2020
Limit_{n->oo} a(n)/a(n-1)^phi = 1. - Peter Woodward, Nov 24 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 18 2011

A084119 Decimal expansion of the Fibonacci binary number, Sum_{k>0} 1/2^F(k), where F(k) = A000045(k).

Original entry on oeis.org

1, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3
Offset: 1

Views

Author

Ralf Stephan, May 18 2003

Keywords

Comments

The Fibonacci binary number 1.41027879720... is known to be transcendental.

Examples

			1.410278797207865891794043024471063...
		

Crossrefs

Cf. A000045, A010056, A079586, A181313 (continued fraction), A124091 (essentially the same).

Programs

  • Mathematica
    RealDigits[N[Sum[1/2^Fibonacci[k], {k, 1, Infinity}], 120]][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    suminf(k=1,1/2^fibonacci(k)) \\ This gives the Fibonacci binary number, not the sequence
    
  • PARI
    default(realprecision, 20080); x=suminf(k=1, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b084119.txt", n, " ", d)); \\

A006518 Continued fraction for Sum_{k >= 2} 2^(-Fibonacci(k)).

Original entry on oeis.org

0, 1, 10, 6, 1, 6, 2, 14, 4, 124, 2, 1, 2, 2039, 1, 9, 1, 1, 1, 262111, 2, 8, 1, 1, 1, 3, 1, 536870655, 4, 16, 3, 1, 3, 7, 1, 140737488347135, 8, 128, 2, 1, 1, 1, 7, 2, 1, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			0.91027879720786589179404302... = 0 + 1/(1 + 1/(10 + 1/(6 + 1/(1 + ...)))). - _Harry J. Smith_, May 04 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 10000); x=suminf(k=2, 1/2^fibonacci(k)); c=contfrac(x); for (n=1, 565, write("b006518.txt", n-1, " ", c[n])); } \\ Harry J. Smith, May 04 2009

Formula

Interestingly, a(13)=2^11-2^3-1, a(19)=2^18-2^5-1, a(27)=2^29-2^8-1, a(35)=2^47-2^13-1. - Ralf Stephan, Jun 07 2005

A309537 Total number of Fibonacci parts in all compositions of n.

Original entry on oeis.org

0, 1, 3, 8, 19, 46, 106, 241, 541, 1198, 2629, 5724, 12380, 26625, 56978, 121413, 257740, 545308, 1150272, 2419856, 5078336, 10633921, 22222338, 46353669, 96525324, 200686620, 416645184, 863834256, 1788756288, 3699688128, 7643727360, 15776156928, 32529718272
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(a(n-j)+`if`((t->issqr(t+4)
          or issqr(t-4))(5*j^2), ceil(2^(n-j-1)), 0), j=1..n)
        end:
    seq(a(n), n=0..33);
  • Mathematica
    a[n_] := a[n] = Sum[a[n - j] + With[{t = 5 j^2}, If[IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4], Ceiling[2^(n - j - 1)], 0]], {j, 1, n}];
    a /@ Range[0, 33] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=2} x^Fibonacci(k)*(1-x)^2/(1-2*x)^2.
a(n) ~ c * 2^n * n, where c = 0.22756969930196647294851075611776578612085598114... - Vaclav Kotesovec, Aug 18 2019
c = A124091/4 - 3/8. - Vaclav Kotesovec, Mar 17 2024
Showing 1-6 of 6 results.