cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A010056 Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
a(A000045(n)) = 1; a(A001690(n)) = 0. - Reinhard Zumkeller, Oct 10 2013
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016

Crossrefs

Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).

Programs

  • Haskell
    import Data.List (genericIndex)
    a010056 = genericIndex a010056_list
    a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
       ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Maple
    a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
    seq(a(n), n=0..144);  # Alois P. Heinz, Dec 06 2020
  • Mathematica
    Join[{1},With[{fibs=Fibonacci[Range[15]]},If[MemberQ[fibs,#],1,0]& /@Range[100]]]  (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=my(k=n^2);k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023

Formula

G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007

A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

Original entry on oeis.org

3, 3, 5, 9, 8, 8, 5, 6, 6, 6, 2, 4, 3, 1, 7, 7, 5, 5, 3, 1, 7, 2, 0, 1, 1, 3, 0, 2, 9, 1, 8, 9, 2, 7, 1, 7, 9, 6, 8, 8, 9, 0, 5, 1, 3, 3, 7, 3, 1, 9, 6, 8, 4, 8, 6, 4, 9, 5, 5, 5, 3, 8, 1, 5, 3, 2, 5, 1, 3, 0, 3, 1, 8, 9, 9, 6, 6, 8, 3, 3, 8, 3, 6, 1, 5, 4, 1, 6, 2, 1, 6, 4, 5, 6, 7, 9, 0, 0, 8, 7, 2, 9, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

André-Jeannin proved that this constant is irrational.
This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - Amiram Eldar, Oct 30 2020

Examples

			3.35988566624317755317201130291892717968890513373...
		

References

  • Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

Crossrefs

Programs

  • Maple
    Digits := 120: c := Pi/2 + I*arccsch(2):
    Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):
    evalf(Jeannin(1000)); # Peter Luschny, Nov 15 2023
  • Mathematica
    digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Apr 09 2013 *)
    First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* Vladimir Reshetnikov, Nov 18 2015 *)
  • PARI
    /* Fast computation without splitting into even and odd indices, see the Arndt reference */
    lambert2(x, a, S)=
    {
    /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)
       computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )
       As series in x correct up to order S^2.
       We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */
        return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );
    }
    inv_fib_sum(p=1, q=1, S)=
    {
    /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)
       computed using generalized Lambert series.
       Must have p^2+4*q > 0 */
        my(al,be);
        \\ Note: the q here is -q in the Horadam paper.
        \\ The following numerical examples are for p=q=1:
        al=1/2*(p+sqrt(p^2+4*q));  \\ == +1.6180339887498...
        be=1/2*(p-sqrt(p^2+4*q));  \\ == -0.6180339887498...
        return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...
    }
    default(realprecision,100);
    S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */
    inv_fib_sum(1,1,S) /* 3.3598856... */ /* Joerg Arndt, Jan 30 2011 */
    
  • PARI
    suminf(k=1, 1/(fibonacci(k))) \\ Michel Marcus, Feb 19 2019
    
  • Sage
    m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # G. C. Greubel, Feb 20 2019

Formula

Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - Peter Bala, Nov 30 2013
From Amiram Eldar, Oct 04 2020: (Start)
Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).
Equals A153386 + A153387. (End)
From Gleb Koloskov, Sep 14 2021: (Start)
Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),
where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390),
c2 = 2*arctan(2)+log(5) = 2*A105199+A016628,
phi = (1+sqrt(5))/2 = A001622,
f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)
From Amiram Eldar, Jan 27 2022: (Start)
Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).
Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).
Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End)
Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - Peter Luschny, Nov 15 2023
Equals lim_{n->oo} A203006(n)/A003266(n) (Z.W. M. Trzaska, 1996). - Raul Prisacariu, Sep 04 2024

A124091 Decimal expansion of Fibonacci binary constant: Sum{i>=0} (1/2)^Fibonacci(i).

Original entry on oeis.org

2, 4, 1, 0, 2, 7, 8, 7, 9, 7, 2, 0, 7, 8, 6, 5, 8, 9, 1, 7, 9, 4, 0, 4, 3, 0, 2, 4, 4, 7, 1, 0, 6, 3, 1, 4, 4, 4, 8, 3, 4, 2, 3, 9, 2, 4, 5, 9, 5, 2, 7, 8, 7, 7, 2, 5, 9, 3, 2, 9, 2, 4, 6, 7, 9, 3, 0, 0, 7, 3, 5, 1, 6, 8, 2, 6, 0, 2, 7, 9, 4, 5, 3, 5, 1, 6, 1, 2, 3, 3, 0, 1, 2, 1, 4, 5, 9, 0, 2, 3, 3, 2, 8, 5, 1
Offset: 1

Views

Author

R. J. Mathar, Nov 25 2006

Keywords

Comments

This constant is transcendental, see A084119. - Charles R Greathouse IV, Nov 12 2014

Examples

			2.4102787972078658917940430244710631444834239245952787725932...
		

Crossrefs

Cf. A007404 (Kempner-Mahler number), A125600 (continued fraction), A084119 (essentially the same).
Cf. A000301.

Programs

  • Mathematica
    RealDigits[ N[ Sum[(1/2)^Fibonacci[i], {i, 0, Infinity}], 111]][[1]] (* Robert G. Wilson v, Nov 26 2006 *)
  • PARI
    a=0 ; for(n=0,30, a += .5^fibonacci(n) ; print(a) ; )
    
  • PARI
    default(realprecision, 20080); x=suminf(k=0, 1/2^fibonacci(k)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b124091.txt", n, " ", d)) \\ Harry J. Smith, May 04 2009

Formula

Equals Sum_{i>=0} 1/2^A000045(i).
Equals A084119 + 1.

Extensions

More terms from Robert G. Wilson v, Nov 26 2006

A006518 Continued fraction for Sum_{k >= 2} 2^(-Fibonacci(k)).

Original entry on oeis.org

0, 1, 10, 6, 1, 6, 2, 14, 4, 124, 2, 1, 2, 2039, 1, 9, 1, 1, 1, 262111, 2, 8, 1, 1, 1, 3, 1, 536870655, 4, 16, 3, 1, 3, 7, 1, 140737488347135, 8, 128, 2, 1, 1, 1, 7, 2, 1, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			0.91027879720786589179404302... = 0 + 1/(1 + 1/(10 + 1/(6 + 1/(1 + ...)))). - _Harry J. Smith_, May 04 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 10000); x=suminf(k=2, 1/2^fibonacci(k)); c=contfrac(x); for (n=1, 565, write("b006518.txt", n-1, " ", c[n])); } \\ Harry J. Smith, May 04 2009

Formula

Interestingly, a(13)=2^11-2^3-1, a(19)=2^18-2^5-1, a(27)=2^29-2^8-1, a(35)=2^47-2^13-1. - Ralf Stephan, Jun 07 2005

A181313 Continued fraction expansion of the Fibonacci binary number.

Original entry on oeis.org

1, 2, 2, 3, 2, 28, 1, 13, 1, 2, 1, 123, 1, 6, 1, 2039, 2, 2, 6, 262111, 1, 35, 1, 1, 3, 536870655, 1, 2, 1, 15, 1, 3, 3, 1, 1, 1, 2, 140737488347135, 1, 1, 1, 1, 1, 127, 1, 7, 7, 1, 5, 2, 2, 75557863725914321321983, 1, 1, 2, 5, 1, 2047, 2, 2, 5, 1, 31, 6, 1, 1, 3, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A125600. - R. J. Mathar, Oct 14 2010

Crossrefs

Cf. A084119 (decimal expansion), A125600 (essentially the same), A006518.

Programs

  • PARI
    contfrac(suminf(n=1,2.^-fibonacci(n)))

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024

A121821 Decimal expansion of the Lucas binary number, Sum_{k>0} 1/2^L(k), where L(k) = A000032(k).

Original entry on oeis.org

6, 9, 5, 8, 0, 4, 5, 9, 7, 8, 0, 9, 9, 1, 7, 8, 7, 9, 6, 5, 8, 3, 2, 7, 8, 6, 7, 1, 4, 1, 6, 5, 9, 5, 5, 9, 7, 7, 9, 5, 1, 3, 2, 7, 1, 8, 5, 4, 8, 5, 6, 1, 2, 0, 0, 4, 3, 1, 5, 7, 2, 2, 0, 5, 7, 4, 6, 0, 9, 6, 4, 0, 5, 1, 6, 3, 3, 4, 6, 7, 3, 3, 5, 4, 5, 7, 7, 7, 5, 7, 7, 4, 5, 5, 4, 8, 3, 7, 1, 5, 9, 4, 6, 1, 5
Offset: 0

Views

Author

Alexander Adamchuk, Aug 26 2006

Keywords

Comments

Its binary expansion is equal to 1 if n is Lucas number else 0.

Examples

			0.6958045978099178796583278671416595597...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/2^(Fibonacci[k-1]+Fibonacci[k+1]), {k, 1, 20}],150]]
  • PARI
    suminf(n=1,1/2^(fibonacci(n-1)+fibonacci(n+1))) \\ Charles R Greathouse IV, Nov 07 2014

A327558 Decimal expansion of Sum_{k>=1} 1/F(k)! where F(k) = A000045(k).

Original entry on oeis.org

2, 6, 7, 5, 0, 2, 4, 8, 0, 1, 7, 4, 7, 8, 9, 2, 0, 2, 5, 6, 8, 9, 3, 7, 6, 3, 8, 8, 6, 4, 4, 6, 1, 6, 6, 2, 0, 2, 3, 7, 3, 7, 1, 5, 1, 2, 8, 2, 3, 5, 8, 5, 2, 8, 4, 5, 3, 8, 9, 8, 9, 0, 2, 3, 7, 7, 1, 2, 7, 7, 2, 0, 8, 4, 6, 9, 3, 4, 6, 2, 0, 8, 9, 9, 0, 9, 1, 0, 9, 6, 9, 5, 8, 2, 5, 1, 0, 7, 2, 0, 5, 8, 7, 0, 8, 2, 0, 2, 9, 8, 9, 0, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			2.6750248017478920256893763886446166202373715128...
		

Crossrefs

Programs

  • PARI
    suminf(n=1, 1/fibonacci(n)!) \\ Michel Marcus, Sep 20 2019

A079591 Decimal expansion of x such that Sum_{k>=1} x^Fibonacci(k) = 1.

Original entry on oeis.org

3, 8, 9, 7, 0, 8, 0, 9, 8, 8, 3, 8, 9, 5, 4, 8, 9, 7, 2, 3, 3, 8, 2, 6, 9, 6, 4, 0, 7, 7, 6, 5, 2, 2, 2, 6, 0, 7, 1, 0, 9, 4, 2, 8, 4, 9, 0, 5, 8, 0, 1, 8, 3, 6, 6, 9, 6, 3, 6, 8, 2, 7, 8, 5, 2, 0, 4, 4, 3, 5, 1, 8, 9, 7, 0, 0, 2, 2, 1, 3, 1, 3, 6, 3, 9, 1, 7, 6, 1, 5, 8, 8, 2, 4, 3, 3, 1, 5, 7, 2, 1, 5, 9, 1, 9, 6
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Examples

			0.3897080988389....
		

Crossrefs

Programs

  • Mathematica
    digits = 106; Clear[f];
    f[m_] := f[m] = Module[{s}, s[c_?NumericQ] := NSum[c^Fibonacci[k], {k, 1, m}, WorkingPrecision -> digits];c /. FindRoot[s[c] == 1, {c, 1/2}, WorkingPrecision -> digits] // RealDigits // First];
    f[1]; f[m = 2];
    While[f[m] != f[m/2], m = 2 m; Print["m = ", m]];
    f[m] (* Jean-François Alcover, Mar 11 2020 *)

Extensions

More terms from Jon E. Schoenfield, Mar 11 2018

A082665 Decimal expansion of Y = sum(k>2, 1/2^floor(k^log(log(k)))).

Original entry on oeis.org

1, 7, 4, 1, 0, 4, 5, 5, 5, 1, 6, 3, 8, 4, 3, 6, 9, 1, 3, 0, 2, 5, 5, 0, 1, 8, 7, 5, 1, 1, 8, 8, 9, 3, 0, 4, 0, 8, 0, 7, 1, 8, 0, 0, 4, 7, 2, 8, 4, 3, 3, 0, 0, 4, 2, 5, 7, 1, 2, 4, 1, 1, 9, 4, 5, 9, 5, 0, 7, 9, 5, 1, 6, 8, 2, 3, 7, 6, 2, 7, 0, 5, 4, 7, 3, 0, 5, 8, 9, 9
Offset: 1

Views

Author

Ralf Stephan, May 18 2003

Keywords

Comments

The number Y=1.7410455516384369.. is known to be transcendental.

Crossrefs

Cf. A084119.

Programs

  • PARI
    suminf(k=3,1/2^floor(k^log(log(k))))

A346588 Decimal expansion of the sum of reciprocals of tribonacci numbers A000213.

Original entry on oeis.org

3, 7, 7, 3, 9, 4, 8, 0, 6, 0, 1, 9, 7, 0, 1, 5, 8, 1, 8, 3, 8, 5, 4, 0, 2, 4, 2, 6, 6, 2, 9, 5, 1, 2, 7, 4, 9, 7, 6, 8, 0, 7, 4, 1, 7, 3, 2, 2, 2, 5, 8, 4, 3, 8, 0, 8, 8, 1, 3, 1, 6, 1, 8, 5, 0, 8, 4, 3, 3, 7, 8, 3, 8, 1, 7, 1, 7, 8, 1, 7, 2, 6, 3, 6, 5, 0, 4, 1, 2, 2, 5, 5, 8, 7, 9, 7, 4, 2, 3, 4, 5, 7, 5, 0, 1
Offset: 1

Views

Author

Christoph B. Kassir, Jul 24 2021

Keywords

Examples

			3.7739480601970158183854024266295127497680741732225...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[1/LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 500]], 10, 105][[1]] (* Amiram Eldar, Jul 26 2021 *)

Extensions

More terms from Jon E. Schoenfield, Jul 25 2021
Showing 1-10 of 10 results.