A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0
Keywords
A126617 a(n) = Sum_{i=0..n} (-2)^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n).
1, -1, 2, -3, 7, -10, 31, -21, 204, 307, 2811, 12100, 74053, 432211, 2768858, 18473441, 129941283, 956187814, 7351696139, 58897405759, 490681196604, 4242903803727, 38014084430983, 352341755256348, 3373662303816313, 33326335433122711, 339232538387804530
Offset: 0
Keywords
Comments
a(n) is positive starting at n=8. - Karol A. Penson and Olivier Gérard, Oct 22 2007
Hankel transform is A000178. - Paul Barry, Apr 23 2009
Examples
G.f.: 1 - 1*x + 2*x^2 - 3*x^3 + 7*x^4 - 10*x^5 + 31*x^6 - 21*x^7 + 204*x^8 + 307*x^9 + 2811*x^10 + 12100*x^11 + 74053*x^12 + 432211*x^13 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[ Sum[ (-2)^(n - k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *) With[{nn=30},CoefficientList[Series[Exp[Exp[x]-2x-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 19 2025 *)
Formula
E.g.f.: exp(exp(x)-2*x-1). - Vladeta Jovovic, Aug 04 2007
a(n) = e^(-1) * Sum_{k>=0} (k-2)^n / k!. This is a Dobinski-type formula. - Karol A. Penson and Olivier Gérard, Oct 22 2007
G.f.: 1/(1+x-x^2/(1-2x^2/(1-x-3x^2/(1-2x-4x^2/(1-3x-5x^2/(1-.... (continued fraction). - Paul Barry, Apr 23 2009
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)charpoly(A,2). - Milan Janjic, Jul 08 2010
G.f.: -1/U(0) where U(k) = x*k - 1 - x - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 28 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x/(1 + 1/(1 - 2*x*(k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: G(0)/(1+3*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
From Sergei N. Gladkovskii, Feb 13 2013: (Start)
Conjecture: if the e.g.f. is E(x)= exp( exp(x) -1 + p*x) then
g.f.: (x+1-p*x)/x/(G(0)-x) - 1/x where G(k) = 2*x + 1 - p*x - x*k + x*(x*k - x - 1 + p*x)/G(k+1); (continued fraction).
So, for this sequence (p=-2), g.f.: (3*x+1)/x/( G(0)-x ) - 1/x where G(k) = 4*x + 1 - x*k + x*(x*k - 3*x - 1)/G(k+1);
(End)
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 30 2021
a(n) ~ n^(n-2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-2)). - Vaclav Kotesovec, Jun 27 2022
Extensions
More terms from Karol A. Penson and Olivier Gérard, Oct 22 2007
A154537 Triangle T(n,m) read by rows: let p(n,x) = exp(-x) * Sum_{m >= 0} (2*m + 1)^n * x^m/m!; then T(n,m) = [x^m] p(n,x).
1, 1, 2, 1, 8, 4, 1, 26, 36, 8, 1, 80, 232, 128, 16, 1, 242, 1320, 1360, 400, 32, 1, 728, 7084, 12160, 6320, 1152, 64, 1, 2186, 36876, 99288, 81200, 25312, 3136, 128, 1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256, 1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512
Offset: 0
Comments
Row sums are A126390.
These numbers are related to Stirling numbers of the second kind as MacMahon numbers A060187 are related to Eulerian numbers.
Let p and q denote operators acting on a function f(x) by pf(x) = x*f(x) and qf(x) = d/dx(f(x)). Let A be the anticommutator operator qp + pq. Then A^n = Sum_{k = 0..n} T(n,k) p^k q^k. For example, A^3(f) = f + 26*x*df/dx + 36*x^2*d^2(f)/dx^2 + 8*x^3*d^3(f)/dx^3. - Peter Bala, Jul 24 2014
From Peter Bala, May 21 2023: (Start)
Compare the definition of the polynomial p(n,x) with Dobiński's formula for the Bell polynomials (row polynomials of A008277 for n >= 1): Bell(n,x) = exp(-x) * Sum_{m >= 0} m^n * x^m/m!.
Boyadzhiev has shown that Bell(n,x) = d/dx( exp(-x) * Sum_{m >= 0} (1^n + 2^n + ... + (m-1)^n) * x^m/m! ). The corresponding result for this table is that the n-th row polynomial p(n,x) = d/dx( exp(-x) * Sum_{m >= 0} (1^n + 3^n + ... + (2*m-1)^n) * x^m/m! ). (End)
Examples
Triangle begins: {1}, {1, 2}, {1, 8, 4}, {1, 26, 36, 8}, {1, 80, 232, 128, 16}, {1, 242, 1320, 1360, 400, 32}, {1, 728, 7084, 12160, 6320, 1152, 64}, {1, 2186, 36876, 99288, 81200, 25312, 3136, 128}, {1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256}, {1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512}, ... Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[4*3*T(3, 2) + 2*6*(-2)^2*Bernoulli(2)*T(2,2)] = (1/2)*(12*36 + 12*4*(1/6)*4) = 232. - _Wolfdieter Lang_, Aug 11 2017
Links
- Khristo N. Boyadzhiev, New identities with Stirling, hyperharmonic, and derangement numbers, Bernoulli and Euler polynomials, powers, and factorials, arXiv:2011.03101v3 [math.NT], 2020-2021.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Eric Weisstein's World of Mathematics, Dobiński's formula
Programs
-
Mathematica
p[x_, n_] = Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]); Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}] Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
Formula
From Peter Bala, Oct 28 2011: (Start)
T(n,k) = 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j+1)^n.
Recurrence relation: T(n,k) = 2*T(n-1,k-1) + (2*k+1)*T(n-1,k).
T(n,k) = (2^k)*A039755(n,k).
E.g.f.: exp(x + y*(exp(2*x) - 1)) = 1 + (1 + 2*y)*x + (1 + 8*y + 4*y^2)*x^2/2! + .... (End)
T(n, k) = Sum_{m=0..n} binomial(n, m)*2^m*Stirling2(m, k), 0 <= k <= n, where Stirling2 is A048993. - Wolfdieter Lang, Apr 13 2017
Boas-Buck recurrence for column sequence m: T(n,k) = (1/(n - k))*[n*(1 + m)*T(n-1,k) + k*Sum_{p=m..n-2} binomial(n,p)*(-2)^(n-p)*Bernoulli(n-p)*T(p,k)], for n > m >= 0, with input T(m,m) = 2^m. See a comment in A282629, also for references, and an example below. - Wolfdieter Lang, Aug 11 2017
Extensions
Edited by N. J. A. Sloane, Jan 12 2009
A124311 a(n) = Sum_{i=0..n} (-2)^i*binomial(n,i)*B(i) where B(n) = Bell numbers A000110(n).
1, -1, 5, -21, 121, -793, 5917, -49101, 447153, -4421105, 47062773, -535732805, 6484924585, -83079996041, 1121947980173, -15915567647101, 236442490569825, -3668776058118881, 59316847871113445, -997182232031471477, 17397298225094055897, -314449131128077197561
Offset: 0
Keywords
Comments
The sequence has strictly alternating signs. The variant Dobinski-type formula e^(-1)* (2)^n * Sum_{k >= 0} ( (k-1/2)^n / k! ) is strictly positive. - Karol A. Penson and Olivier Gérard, Oct 22 2007
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
A124311:= func< n | (&+[(-2)^k*Binomial(n,k)*Bell(k): k in [0..n]]) >; [A124311(n): n in [0..30]]; // G. C. Greubel, Aug 25 2023
-
Mathematica
Table[ Sum[ (-2)^(k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *) With[{nn=30},CoefficientList[Series[Exp[Exp[-2x]-1+x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 04 2016 *)
-
Sage
def A124311_list(n): # n>=1 T = [0]*(n+1); R = [1] for m in (1..n-1): a,b,c = 1,0,0 for k in range(m,-1,-1): r = a + 2*(k*(b+c)+c) if k < m : T[k+2] = u; a,b,c = T[k-1],a,b u = r T[1] = u; R.append((-1)^m*sum(T)) return R A124311_list(22) # Peter Luschny, Nov 02 2012
-
SageMath
def A124311(n): return sum( (-2)^k*binomial(n,k)*bell_number(k) for k in range(n+1) ) [A124311(n) for n in range(31)] # G. C. Greubel, Aug 25 2023
Formula
E.g.f.: exp(exp(-2*x) - 1 + x). - Vladeta Jovovic, Aug 04 2007
G.f.: 1/U(0) where U(k)= 1 + x*(2*k+1) - 4*x^2*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
a(n) ~ (-2)^n * n^(n - 1/2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * (-2)^k * a(n-k). - Ilya Gutkovskiy, Nov 29 2023
A284859 Row sums of the Sheffer triangle (exp(x), exp(3*x)-1) given in A282629.
1, 4, 25, 199, 1876, 20257, 245017, 3266914, 47450923, 743935375, 12497579698, 223619318215, 4240423494685, 84855613320004, 1785410320771933, 39373503608087299, 907548770965519660, 21810536356271794549, 545305573054110017125, 14155835044848094831018
Offset: 0
Comments
Programs
-
Mathematica
T[n_, m_]:= Sum[Binomial[m, k] (-1)^(k - m) (1 + 3k)^n/m!, {k, 0, m}]; Table[Sum[T[n, m], {m, 0, n}], {n, 0, 20}] (* Indranil Ghosh, Apr 10 2017 *) Table[Sum[3^k*Binomial[n,k]*BellB[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2022 *)
-
PARI
T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!); a(n) = sum(m=0, n, T(n, m)); \\ Indranil Ghosh, Apr 10 2017
-
Python
from sympy import binomial, factorial def T(n, m): return sum([binomial(m, k) * (-1)**(k - m) * (1 + 3*k)**n for k in range(m + 1)])//factorial(m) def a(n): return sum([T(n, k) for k in range(n + 1)]) print([a(n) for n in range(20)]) # Indranil Ghosh, Apr 10 2017
Formula
a(n) = Sum_{m=0..n} A282629(n, m).
E.g.f.: exp(x)*exp(exp(3*x) -1).
a(n) = (1/e)*Sum_{m>=0} (1/m!)*(1+3*m)^n, n >= 0. (Dobiński type formula from the A282629(n,m) sum formula, interchanging summations).
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
a(n) ~ Bell(n) * (3 + LambertW(n)/n)^n. - Vaclav Kotesovec, Jun 22 2022
a(n) ~ 3^n * n^(n + 1/3) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/3)). - Vaclav Kotesovec, Jun 27 2022
A285064 Row sums of Sheffer triangle S2[4,1] = A285061.
1, 5, 41, 429, 5329, 75989, 1215481, 21453693, 412820385, 8579772325, 191166679497, 4538638641997, 114238219541617, 3035305413035125, 84819458105387417, 2484842038066995485, 76101249873390595905, 2430497813260105226053, 80769536433102942870377, 2787318255464814752951533
Offset: 0
Comments
Programs
-
Mathematica
Table[Sum[Binomial[n, k]*BellB[k]*4^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2017 *)
-
Python
from sympy import binomial, bell def a(n): return sum([binomial(n, k)*bell(k)*4**k for k in range(n + 1)]) # Indranil Ghosh, Apr 19 2017
Formula
a(n) = Sum_{m=0..n} A285061(n, m), n >= 0.
E.g.f.: exp(x)*exp(exp(4*x) - 1).
a(n) = (1/e)*Sum_{m>=0} (1/m!)*(1+4*m)^n, n >= 0. (Dobiński type formula from the A285061(n,m) sum formula, after interchange of summations).
a(n) = Sum_{k=0..n} binomial(n, k)*A000110(k)*4^k, n >= 0. From the Vaclav Kotesovec program. This follows from the S2[4,1] formula in terms of Stirling2. - Wolfdieter Lang, Apr 24 2017
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
a(n) ~ Bell(n) * (4 + LambertW(n)/n)^n. - Vaclav Kotesovec, Jun 22 2022
a(n) ~ 4^n * n^(n + 1/4) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/4)). - Vaclav Kotesovec, Jun 27 2022
A355291 Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).
1, 3, 14, 81, 551, 4266, 36803, 348543, 3583484, 39652659, 468970211, 5894584812, 78366374813, 1097537989671, 16136598952718, 248309032411485, 3988468487017379, 66715970326561170, 1159712730763363991, 20909709414253764819, 390374806223071148084, 7534929383736826736007
Offset: 0
Keywords
Comments
In general, if m > 0, b > d >= 1 and e.g.f. = exp(m*exp(b*x) + r*exp(d*x) + s) then a(n) ~ exp(m*exp(b*z) + r*exp(d*z) + s - n) * (n/z)^(n + 1/2) / sqrt(m*b*(1 + b*z)*exp(b*z) + r*d*(1 + d*z)*exp(d*z)), where z = LambertW(n/m)/b - 1/(d + b/LambertW(n/m) + b^2 * m^(d/b) * n^(1 - d/b) * (1 + LambertW(n/m)) / (d*r*LambertW(n/m)^(2 - d/b))). - Vaclav Kotesovec, Jul 03 2022
In addition, if b/d >=2 then a(n) ~ c * (b*n/LambertW(n/m))^n * exp(n/LambertW(n/m) + r * (n/(m*LambertW(n/m)))^(d/b) - n + s) / sqrt(1 + LambertW(n/m)), where c = 1 for b/d > 2 and c = exp(-r^2/(8*m)) for b/d = 2. - Vaclav Kotesovec, Jul 10 2022
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Vaclav Kotesovec, Asymptotics for a certain group of exponential generating functions, arXiv:2207.10568 [math.CO], Jul 13 2022.
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Exp[Exp[2*x] - 2 + Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]! Table[Sum[Binomial[n, k] * 2^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x)*(exp(x) + 1) - 2))) \\ Michel Marcus, Jun 27 2022
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * Bell(k) * Bell(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jul 01 2022
a(n) ~ exp(exp(2*z) + exp(z) - 2 - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) + (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) + 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 17/8 - n/LambertW(n) - sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022
A367835 Expansion of e.g.f. 1/(2 - x - exp(2*x)).
1, 3, 22, 242, 3544, 64872, 1424976, 36517840, 1069533824, 35240047232, 1290137297152, 51955085596416, 2282489348834304, 108630445541684224, 5567741266098944000, 305752314499878569984, 17909736027185859100672, 1114647522476340562132992
Offset: 0
Keywords
Programs
-
Maple
A367835 := proc(n) option remember ; if n = 0 then 1 ; else n*procname(n-1)+add(2^k*binomial(n,k)*procname(n-k),k=1..n) ; end if; end proc: seq(A367835(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
Formula
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).
A307066 a(n) = exp(-1) * Sum_{k>=0} (n*k + 1)^n/k!.
1, 2, 13, 199, 5329, 216151, 12211597, 909102342, 85761187393, 9957171535975, 1390946372509101, 229587693339867567, 44117901231194922193, 9748599124579281064294, 2451233017637221706477037, 695088863051920283838281851, 220558203335628758134165860609
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Programs
-
Magma
A307066:= func< n | (&+[Binomial(n,k)*n^k*Bell(k): k in [0..n]]) >; [A307066(n): n in [0..31]]; // G. C. Greubel, Jan 24 2024
-
Mathematica
Table[Exp[-1] Sum[(n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}] Table[n! SeriesCoefficient[Exp[Exp[n x] + x - 1], {x, 0, n}], {n, 0, 16}] Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
-
SageMath
def A307066(n): return sum(binomial(n,k)*n^k*bell_number(k) for k in range(n+1)) [A307066(n) for n in range(31)] # G. C. Greubel, Jan 24 2024
Formula
a(n) = n! * [x^n] exp(exp(n*x) + x - 1).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * Bell(k).
A346417 E.g.f.: exp(exp(2*(exp(x) - 1)) - 1).
1, 2, 10, 66, 538, 5186, 57402, 714594, 9853978, 148774914, 2436823034, 42979319202, 811254807770, 16302732719682, 347248840767162, 7809649226242530, 184831773033020826, 4589793199157616770, 119272846472231229818, 3235960069037751550498, 91466308730323104617050
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Maple
b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=1, 1, b(m, 1, 0)*2^m) , m*b(n-1, t, m)+b(n-1, t, m+1)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2021
-
Mathematica
nmax = 20; CoefficientList[Series[Exp[Exp[2 (Exp[x] - 1)] - 1], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS2[n, k] 2^k BellB[k], {k, 0, n}], {n, 0, 20}] a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] BellB[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
-
PARI
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(2*(exp(x) - 1)) - 1))) \\ Michel Marcus, Jul 19 2021
Formula
a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^k * Bell(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001861(k) * a(n-k).
Comments
Examples
Crossrefs
Programs
Mathematica
Formula