cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A126617 a(n) = Sum_{i=0..n} (-2)^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

1, -1, 2, -3, 7, -10, 31, -21, 204, 307, 2811, 12100, 74053, 432211, 2768858, 18473441, 129941283, 956187814, 7351696139, 58897405759, 490681196604, 4242903803727, 38014084430983, 352341755256348, 3373662303816313, 33326335433122711, 339232538387804530
Offset: 0

Author

N. J. A. Sloane, Aug 04 2007

Keywords

Comments

a(n) is positive starting at n=8. - Karol A. Penson and Olivier Gérard, Oct 22 2007
Hankel transform is A000178. - Paul Barry, Apr 23 2009

Examples

			G.f.: 1 - 1*x + 2*x^2 - 3*x^3 + 7*x^4 - 10*x^5 + 31*x^6 - 21*x^7 + 204*x^8 + 307*x^9 + 2811*x^10 + 12100*x^11 + 74053*x^12 + 432211*x^13 + ...
		

Programs

  • Mathematica
    Table[ Sum[ (-2)^(n - k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *)
    With[{nn=30},CoefficientList[Series[Exp[Exp[x]-2x-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 19 2025 *)

Formula

E.g.f.: exp(exp(x)-2*x-1). - Vladeta Jovovic, Aug 04 2007
a(n) = e^(-1) * Sum_{k>=0} (k-2)^n / k!. This is a Dobinski-type formula. - Karol A. Penson and Olivier Gérard, Oct 22 2007
G.f.: 1/(1+x-x^2/(1-2x^2/(1-x-3x^2/(1-2x-4x^2/(1-3x-5x^2/(1-.... (continued fraction). - Paul Barry, Apr 23 2009
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)charpoly(A,2). - Milan Janjic, Jul 08 2010
G.f.: -1/U(0) where U(k) = x*k - 1 - x - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 28 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x/(1 + 1/(1 - 2*x*(k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: G(0)/(1+3*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
From Sergei N. Gladkovskii, Feb 13 2013: (Start)
Conjecture: if the e.g.f. is E(x)= exp( exp(x) -1 + p*x) then
g.f.: (x+1-p*x)/x/(G(0)-x) - 1/x where G(k) = 2*x + 1 - p*x - x*k + x*(x*k - x - 1 + p*x)/G(k+1); (continued fraction).
So, for this sequence (p=-2), g.f.: (3*x+1)/x/( G(0)-x ) - 1/x where G(k) = 4*x + 1 - x*k + x*(x*k - 3*x - 1)/G(k+1);
(End)
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 30 2021
a(n) ~ n^(n-2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-2)). - Vaclav Kotesovec, Jun 27 2022

Extensions

More terms from Karol A. Penson and Olivier Gérard, Oct 22 2007

A154537 Triangle T(n,m) read by rows: let p(n,x) = exp(-x) * Sum_{m >= 0} (2*m + 1)^n * x^m/m!; then T(n,m) = [x^m] p(n,x).

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 1, 26, 36, 8, 1, 80, 232, 128, 16, 1, 242, 1320, 1360, 400, 32, 1, 728, 7084, 12160, 6320, 1152, 64, 1, 2186, 36876, 99288, 81200, 25312, 3136, 128, 1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256, 1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512
Offset: 0

Author

Roger L. Bagula, Jan 11 2009

Keywords

Comments

Row sums are A126390.
These numbers are related to Stirling numbers of the second kind as MacMahon numbers A060187 are related to Eulerian numbers.
Let p and q denote operators acting on a function f(x) by pf(x) = x*f(x) and qf(x) = d/dx(f(x)). Let A be the anticommutator operator qp + pq. Then A^n = Sum_{k = 0..n} T(n,k) p^k q^k. For example, A^3(f) = f + 26*x*df/dx + 36*x^2*d^2(f)/dx^2 + 8*x^3*d^3(f)/dx^3. - Peter Bala, Jul 24 2014
From Peter Bala, May 21 2023: (Start)
Compare the definition of the polynomial p(n,x) with Dobiński's formula for the Bell polynomials (row polynomials of A008277 for n >= 1): Bell(n,x) = exp(-x) * Sum_{m >= 0} m^n * x^m/m!.
Boyadzhiev has shown that Bell(n,x) = d/dx( exp(-x) * Sum_{m >= 0} (1^n + 2^n + ... + (m-1)^n) * x^m/m! ). The corresponding result for this table is that the n-th row polynomial p(n,x) = d/dx( exp(-x) * Sum_{m >= 0} (1^n + 3^n + ... + (2*m-1)^n) * x^m/m! ). (End)

Examples

			Triangle begins:
  {1},
  {1, 2},
  {1, 8, 4},
  {1, 26, 36, 8},
  {1, 80, 232, 128, 16},
  {1, 242, 1320, 1360, 400, 32},
  {1, 728, 7084, 12160, 6320, 1152, 64},
  {1, 2186, 36876, 99288, 81200, 25312, 3136, 128},
  {1, 6560, 188752, 768768, 929376, 440832, 91392, 8192, 256},
  {1, 19682, 956880, 5758880, 9901920, 6707904, 2069760, 305664, 20736, 512},
  ...
Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[4*3*T(3, 2) + 2*6*(-2)^2*Bernoulli(2)*T(2,2)] = (1/2)*(12*36 + 12*4*(1/6)*4) = 232. - _Wolfdieter Lang_, Aug 11 2017
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = Sum[(2*m + 1)^n*x^m/m!, {m, 0, Infinity}]/(Exp[x]);
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
    Flatten[%]

Formula

From Peter Bala, Oct 28 2011: (Start)
T(n,k) = 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j+1)^n.
Recurrence relation: T(n,k) = 2*T(n-1,k-1) + (2*k+1)*T(n-1,k).
T(n,k) = (2^k)*A039755(n,k).
E.g.f.: exp(x + y*(exp(2*x) - 1)) = 1 + (1 + 2*y)*x + (1 + 8*y + 4*y^2)*x^2/2! + .... (End)
T(n, k) = Sum_{m=0..n} binomial(n, m)*2^m*Stirling2(m, k), 0 <= k <= n, where Stirling2 is A048993. - Wolfdieter Lang, Apr 13 2017
Boas-Buck recurrence for column sequence m: T(n,k) = (1/(n - k))*[n*(1 + m)*T(n-1,k) + k*Sum_{p=m..n-2} binomial(n,p)*(-2)^(n-p)*Bernoulli(n-p)*T(p,k)], for n > m >= 0, with input T(m,m) = 2^m. See a comment in A282629, also for references, and an example below. - Wolfdieter Lang, Aug 11 2017

Extensions

Edited by N. J. A. Sloane, Jan 12 2009

A124311 a(n) = Sum_{i=0..n} (-2)^i*binomial(n,i)*B(i) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

1, -1, 5, -21, 121, -793, 5917, -49101, 447153, -4421105, 47062773, -535732805, 6484924585, -83079996041, 1121947980173, -15915567647101, 236442490569825, -3668776058118881, 59316847871113445, -997182232031471477, 17397298225094055897, -314449131128077197561
Offset: 0

Author

N. J. A. Sloane, Aug 04 2007

Keywords

Comments

The sequence has strictly alternating signs. The variant Dobinski-type formula e^(-1)* (2)^n * Sum_{k >= 0} ( (k-1/2)^n / k! ) is strictly positive. - Karol A. Penson and Olivier Gérard, Oct 22 2007

Crossrefs

Programs

  • Magma
    A124311:= func< n | (&+[(-2)^k*Binomial(n,k)*Bell(k): k in [0..n]]) >;
    [A124311(n): n in [0..30]]; // G. C. Greubel, Aug 25 2023
  • Mathematica
    Table[ Sum[ (-2)^(k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *)
    With[{nn=30},CoefficientList[Series[Exp[Exp[-2x]-1+x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 04 2016 *)
  • Sage
    def A124311_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*(k*(b+c)+c)
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u;
            R.append((-1)^m*sum(T))
        return R
    A124311_list(22)  # Peter Luschny, Nov 02 2012
    
  • SageMath
    def A124311(n): return sum( (-2)^k*binomial(n,k)*bell_number(k) for k in range(n+1) )
    [A124311(n) for n in range(31)] # G. C. Greubel, Aug 25 2023
    

Formula

E.g.f.: exp(exp(-2*x) - 1 + x). - Vladeta Jovovic, Aug 04 2007
G.f.: 1/U(0) where U(k)= 1 + x*(2*k+1) - 4*x^2*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
a(n) ~ (-2)^n * n^(n - 1/2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * (-2)^k * a(n-k). - Ilya Gutkovskiy, Nov 29 2023

A284859 Row sums of the Sheffer triangle (exp(x), exp(3*x)-1) given in A282629.

Original entry on oeis.org

1, 4, 25, 199, 1876, 20257, 245017, 3266914, 47450923, 743935375, 12497579698, 223619318215, 4240423494685, 84855613320004, 1785410320771933, 39373503608087299, 907548770965519660, 21810536356271794549, 545305573054110017125, 14155835044848094831018
Offset: 0

Author

Wolfdieter Lang, Apr 05 2017

Keywords

Comments

See A282629 for details. These are generalized Bell numbers (A000110) because A282629 is a generalized Stirling2 triangle.

Crossrefs

Programs

  • Mathematica
    T[n_, m_]:= Sum[Binomial[m, k] (-1)^(k - m) (1 + 3k)^n/m!, {k, 0, m}]; Table[Sum[T[n, m], {m, 0, n}], {n, 0, 20}] (* Indranil Ghosh, Apr 10 2017 *)
    Table[Sum[3^k*Binomial[n,k]*BellB[k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2022 *)
  • PARI
    T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
    a(n) = sum(m=0, n, T(n, m)); \\ Indranil Ghosh, Apr 10 2017
    
  • Python
    from sympy import binomial, factorial
    def T(n, m): return sum([binomial(m, k) * (-1)**(k - m) * (1 + 3*k)**n for k in range(m + 1)])//factorial(m)
    def a(n): return sum([T(n, k) for k in range(n + 1)])
    print([a(n) for n in range(20)]) # Indranil Ghosh, Apr 10 2017

Formula

a(n) = Sum_{m=0..n} A282629(n, m).
E.g.f.: exp(x)*exp(exp(3*x) -1).
a(n) = (1/e)*Sum_{m>=0} (1/m!)*(1+3*m)^n, n >= 0. (Dobiński type formula from the A282629(n,m) sum formula, interchanging summations).
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 3^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
a(n) ~ Bell(n) * (3 + LambertW(n)/n)^n. - Vaclav Kotesovec, Jun 22 2022
a(n) ~ 3^n * n^(n + 1/3) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/3)). - Vaclav Kotesovec, Jun 27 2022

A285064 Row sums of Sheffer triangle S2[4,1] = A285061.

Original entry on oeis.org

1, 5, 41, 429, 5329, 75989, 1215481, 21453693, 412820385, 8579772325, 191166679497, 4538638641997, 114238219541617, 3035305413035125, 84819458105387417, 2484842038066995485, 76101249873390595905, 2430497813260105226053, 80769536433102942870377, 2787318255464814752951533
Offset: 0

Author

Wolfdieter Lang, Apr 13 2017

Keywords

Comments

See A285061 for details. These are generalized Bell numbers (A000110) because A285061 is a generalized Stirling2 triangle.
For the alternating row sums of A285061 see A285065.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*BellB[k]*4^k, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2017 *)
  • Python
    from sympy import binomial, bell
    def a(n): return sum([binomial(n, k)*bell(k)*4**k for k in range(n + 1)]) # Indranil Ghosh, Apr 19 2017

Formula

a(n) = Sum_{m=0..n} A285061(n, m), n >= 0.
E.g.f.: exp(x)*exp(exp(4*x) - 1).
a(n) = (1/e)*Sum_{m>=0} (1/m!)*(1+4*m)^n, n >= 0. (Dobiński type formula from the A285061(n,m) sum formula, after interchange of summations).
a(n) = Sum_{k=0..n} binomial(n, k)*A000110(k)*4^k, n >= 0. From the Vaclav Kotesovec program. This follows from the S2[4,1] formula in terms of Stirling2. - Wolfdieter Lang, Apr 24 2017
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 4^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
a(n) ~ Bell(n) * (4 + LambertW(n)/n)^n. - Vaclav Kotesovec, Jun 22 2022
a(n) ~ 4^n * n^(n + 1/4) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/4)). - Vaclav Kotesovec, Jun 27 2022

A355291 Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).

Original entry on oeis.org

1, 3, 14, 81, 551, 4266, 36803, 348543, 3583484, 39652659, 468970211, 5894584812, 78366374813, 1097537989671, 16136598952718, 248309032411485, 3988468487017379, 66715970326561170, 1159712730763363991, 20909709414253764819, 390374806223071148084, 7534929383736826736007
Offset: 0

Author

Vaclav Kotesovec, Jun 27 2022

Keywords

Comments

In general, if m > 0, b > d >= 1 and e.g.f. = exp(m*exp(b*x) + r*exp(d*x) + s) then a(n) ~ exp(m*exp(b*z) + r*exp(d*z) + s - n) * (n/z)^(n + 1/2) / sqrt(m*b*(1 + b*z)*exp(b*z) + r*d*(1 + d*z)*exp(d*z)), where z = LambertW(n/m)/b - 1/(d + b/LambertW(n/m) + b^2 * m^(d/b) * n^(1 - d/b) * (1 + LambertW(n/m)) / (d*r*LambertW(n/m)^(2 - d/b))). - Vaclav Kotesovec, Jul 03 2022
In addition, if b/d >=2 then a(n) ~ c * (b*n/LambertW(n/m))^n * exp(n/LambertW(n/m) + r * (n/(m*LambertW(n/m)))^(d/b) - n + s) / sqrt(1 + LambertW(n/m)), where c = 1 for b/d > 2 and c = exp(-r^2/(8*m)) for b/d = 2. - Vaclav Kotesovec, Jul 10 2022

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[2*x] - 2 + Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n, k] * 2^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x)*(exp(x) + 1) - 2))) \\ Michel Marcus, Jun 27 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * 2^k * Bell(k) * Bell(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jul 01 2022
a(n) ~ exp(exp(2*z) + exp(z) - 2 - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) + (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) + 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 17/8 - n/LambertW(n) - sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022

A367835 Expansion of e.g.f. 1/(2 - x - exp(2*x)).

Original entry on oeis.org

1, 3, 22, 242, 3544, 64872, 1424976, 36517840, 1069533824, 35240047232, 1290137297152, 51955085596416, 2282489348834304, 108630445541684224, 5567741266098944000, 305752314499878569984, 17909736027185859100672, 1114647522476340562132992
Offset: 0

Author

Seiichi Manyama, Dec 02 2023

Keywords

Programs

  • Maple
    A367835 := proc(n)
        option remember ;
        if n = 0 then
            1 ;
        else
            n*procname(n-1)+add(2^k*binomial(n,k)*procname(n-k),k=1..n) ;
        end if;
    end proc:
    seq(A367835(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).

A307066 a(n) = exp(-1) * Sum_{k>=0} (n*k + 1)^n/k!.

Original entry on oeis.org

1, 2, 13, 199, 5329, 216151, 12211597, 909102342, 85761187393, 9957171535975, 1390946372509101, 229587693339867567, 44117901231194922193, 9748599124579281064294, 2451233017637221706477037, 695088863051920283838281851, 220558203335628758134165860609
Offset: 0

Author

Ilya Gutkovskiy, Jun 24 2019

Keywords

Programs

  • Magma
    A307066:= func< n | (&+[Binomial(n,k)*n^k*Bell(k): k in [0..n]]) >;
    [A307066(n): n in [0..31]]; // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    Table[Exp[-1] Sum[(n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
    Table[n! SeriesCoefficient[Exp[Exp[n x] + x - 1], {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
  • SageMath
    def A307066(n): return sum(binomial(n,k)*n^k*bell_number(k) for k in range(n+1))
    [A307066(n) for n in range(31)] # G. C. Greubel, Jan 24 2024

Formula

a(n) = n! * [x^n] exp(exp(n*x) + x - 1).
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * Bell(k).

A346417 E.g.f.: exp(exp(2*(exp(x) - 1)) - 1).

Original entry on oeis.org

1, 2, 10, 66, 538, 5186, 57402, 714594, 9853978, 148774914, 2436823034, 42979319202, 811254807770, 16302732719682, 347248840767162, 7809649226242530, 184831773033020826, 4589793199157616770, 119272846472231229818, 3235960069037751550498, 91466308730323104617050
Offset: 0

Author

Ilya Gutkovskiy, Jul 16 2021

Keywords

Programs

  • Maple
    b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=1, 1,
          b(m, 1, 0)*2^m) , m*b(n-1, t, m)+b(n-1, t, m+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 06 2021
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[2 (Exp[x] - 1)] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 2^k BellB[k], {k, 0, n}], {n, 0, 20}]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] BellB[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(2*(exp(x) - 1)) - 1))) \\ Michel Marcus, Jul 19 2021

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^k * Bell(k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001861(k) * a(n-k).
Showing 1-10 of 15 results. Next