A162436
a(n) = 3*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 1
Essentially the same as
A056449 (3^floor((n+1)/2)) and
A108411 (powers of 3 repeated).
-
[ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..35] ];
-
CoefficientList[Series[(-3*x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]] (* or *) With[{c= 3^Range[20]},Join[{1},Riffle[c,c]]](* Harvey P. Dale, Feb 17 2012 *)
-
a(n)=3^(n>>1) \\ Charles R Greathouse IV, Jul 15 2011
G.f. corrected, formula simplified, comments added by
Klaus Brockhaus, Sep 18 2009
A128018
Expansion of (1-4*x)/(1-2*x+4*x^2).
Original entry on oeis.org
1, -2, -8, -8, 16, 64, 64, -128, -512, -512, 1024, 4096, 4096, -8192, -32768, -32768, 65536, 262144, 262144, -524288, -2097152, -2097152, 4194304, 16777216, 16777216, -33554432, -134217728, -134217728, 268435456, 1073741824, 1073741824, -2147483648, -8589934592
Offset: 0
-
CoefficientList[Series[(1 - 4*x)/(1 - 2*x + 4*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{2,-4},{1,-2},50] (* G. C. Greubel, Feb 28 2017 *)
-
x='x+O('x^50); Vec((1-4*x)/(1-2*x+4*x^2)) \\ G. C. Greubel, Feb 28 2017
A141533
The first subdiagonal of the array of A141425 and its higher order differences.
Original entry on oeis.org
1, -1, -2, 23, 28, -7, 22, 251, 376, 149, 658, 3143, 5188, 4913, 13102, 42611, 75376, 101549, 232618, 612863, 1137148, 1831433, 3928582, 9185771, 17574376, 31162949, 64717378, 141392183, 275609908, 515347553, 1052218462, 2212053731, 4359537376, 8396224349
Offset: 1
A141425 and its first, second, third differences etc. in followup rows define an array T(n,m):
..1...2...4...5...7...8...1...2...4...5...
..1...2...1...2...1..-7...1...2...1...2...
..1..-1...1..-1..-8...8...1..-1...1..-1...
.-2...2..-2..-7..16..-7..-2...2..-2..-7...
..4..-4..-5..23.-23...5...4..-4..-5..23...
.-8..-1..28.-46..28..-1..-8..-1..28.-46...
..7..29.-74..74.-29..-7...7..29.-74..74...
.22.-103.148.-103..22..14..22.-103.148.-103...
-125.251.-251.125..-8...8.-125.251.-251.125...
376.-502.376.-133..16.-133.376.-502.376.-133...
Then a(n) = T(n+1,n) .
A287479
Expansion of g.f. (x + x^2)/(1 + 3*x^2).
Original entry on oeis.org
0, 1, 1, -3, -3, 9, 9, -27, -27, 81, 81, -243, -243, 729, 729, -2187, -2187, 6561, 6561, -19683, -19683, 59049, 59049, -177147, -177147, 531441, 531441, -1594323, -1594323, 4782969, 4782969, -14348907, -14348907, 43046721, 43046721, -129140163, -129140163, 387420489
Offset: 0
-
Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
(* or, computation from b = A157241 : *)
b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
-
concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ Felix Fröhlich, Oct 23 2018
Showing 1-4 of 4 results.
Comments