cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A164123 Partial sums of A162436.

Original entry on oeis.org

1, 4, 7, 16, 25, 52, 79, 160, 241, 484, 727, 1456, 2185, 4372, 6559, 13120, 19681, 39364, 59047, 118096, 177145, 354292, 531439, 1062880, 1594321, 3188644, 4782967, 9565936, 14348905, 28697812, 43046719, 86093440, 129140161, 258280324, 387420487, 774840976, 1162261465
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Comments

Interleaving of A058481 and A100774 without initial term 0.
Apparently a(n) = A062318(n+2) - 1.
The terms beginning with a(2) are the row numbers in Pascal's Triangle where every 3rd element in those rows is divisible by 3 and none of the other elements in those rows are divisible by 3. - Thomas M. Green, Apr 03 2013

Examples

			For n = 3, a(3) = 7. The binomial coefficients of the 7th row of Pascal's Triangle are 1 7 21 35 35 21 7 1 and every 3rd element is a multiple of 3. - _Thomas M. Green_, Apr 03 2013
		

References

  • Thomas M. Green, Prime Patterns in Pascal's Triangle, paper in review process, 2013.

Crossrefs

Cf. A162436, A058481 (3^n-2), A100774 (2*(3^n - 1)), A062318, A038754, A038754.

Programs

  • Magma
    T:=[ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..33] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    Accumulate[Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]]] (* Harvey P. Dale, Feb 17 2012 *)
  • PARI
    a(n) = (2+n%2)*3^(n\2)-2 \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A038754(n+1) - 2.
a(n) = 3*a(n-2) + 4 for n > 2; a(1) = 1, a(2) = 4.
a(n) = (5 - (-1)^n)*3^(1/4*(2*n - 1 + (-1)^n))/2 - 2.
G.f.: x*(1 + 3*x)/((1 - x)*(1 - 3*x^2)).
E.g.f.: 2*(cosh(sqrt(3)*x) - cosh(x)) + sqrt(3)*sinh(sqrt(3)*x) - 2*sinh(x). - Stefano Spezia, Dec 31 2022

Extensions

Incorrect formula removed by Stefano Spezia, Dec 31 2022

A108411 a(n) = 3^floor(n/2). Powers of 3 repeated.

Original entry on oeis.org

1, 1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0

Views

Author

Ralf Stephan, Jun 05 2005

Keywords

Comments

a(n) is the Parker sequence for the automorphism group of the limit of the class of oriented graphs; a(n) counts the finite circulant structures in that class. - N-E. Fahssi, Feb 18 2008
Complete sequence: every positive integer is the sum of members of this sequence. - Charles R Greathouse IV, Jul 19 2012
Conjecture: a(n+1) is the number of distinct subsets S of {0,1,2,...,n} such that the sumset S+S does not contain n. - Michael Chu, Oct 05 2021. Andrew Howroyd, Nov 20 2021: The conjecture is true: If there are m pairs of numbers that add to n then inclusion/exclusion gives sum(k=0, m, binomial(m,k)*(-1)^k*2^(2*m-2*k)) as the number of sets that don't contain any of those pairs which equals 3^m. For even n , n/2 cannot be included in any set.
Also, number of walks of length n in the graph K_{1,3} (the graph with edges {1,2}, {1,3}, {1,4}) starting at one of the degree 1 vertices. - Sean A. Irvine, May 30 2025

Examples

			a(6) = 27; 3^floor(6/2) = 3^floor(3) = 3^3 = 27.
		

Crossrefs

Essentially the same as A056449 and A162436.

Programs

Formula

O.g.f.: (1+x)/(1-3*x^2). - R. J. Mathar, Apr 01 2008
a(n) = 3^(n/2)*((1+(-1)^n)/2+(1-(-1)^n)/(2*sqrt(3))). - Paul Barry, Nov 12 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (-1)^n*sum(A158020(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Dec 01 2011
a(n) = sum(A152815(n,k)*2^k, 0<=k<=n). - Philippe Deléham, Apr 22 2013
a(n) = 3^A004526(n). - Michel Marcus, Aug 30 2014
E.g.f.: cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022

Extensions

Incorrect formula removed by Michel Marcus, Oct 06 2021

A056449 a(n) = 3^floor((n+1)/2).

Original entry on oeis.org

1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0

Views

Author

Keywords

Comments

One followed by powers of 3 with positive exponent, repeated. - Omar E. Pol, Jul 27 2009
Number of achiral rows of n colors using up to three colors. E.g., for a(3) = 9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC. - Robert A. Russell, Nov 07 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=3 of A321391.
Essentially the same as A108411 and A162436.
Cf. A000244 (oriented), A032120 (unoriented), A032086(n>1) (chiral).

Programs

  • Magma
    [3^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    Riffle[3^Range[0, 20], 3^Range[20]] (* Harvey P. Dale, Jan 21 2015 *)
    Table[3^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 3}, {1, 3}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n)=3^floor((n+1)/2); \\ Joerg Arndt, Apr 23 2013
    
  • Python
    def A056449(n): return 3**(n+1>>1) # Chai Wah Wu, Oct 28 2024

Formula

G.f.: (1 + 3*x) / (1 - 3*x^2). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = k^ceiling(n/2), where k = 3 is the number of possible colors. - Robert A. Russell, Nov 07 2018
a(n) = C(3,0)*A000007(n) + C(3,1)*A057427(n) + C(3,2)*A056453(n) + C(3,3)*A056454(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x). - Stefano Spezia, Dec 31 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Klaus Brockhaus, Jul 03 2009
a(0)=1 prepended by Robert A. Russell, Nov 07 2018

A162766 a(n) = 3*a(n-2) for n > 2; a(1) = 4, a(2) = 3.

Original entry on oeis.org

4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Jul 13 2009

Keywords

Comments

Binomial transform is A162559. Second binomial transform is A077236.

Crossrefs

Programs

  • Magma
    [ n le 2 select 5-n else 3*Self(n-2): n in [1..34] ];
    
  • PARI
    a(n)=3^(n\2)*4^(n%2) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (5-3*(-1)^n)*3^(1/4*(2*n-1+(-1)^n))/2.
G.f.: x*(4+3*x)/(1-3*x^2).
a(n) = A074324(n+1) = A166552(n+1) = 3^floor(n/2)*4^(n%2), where n%2 = 0 for n even, 1 for n odd. - M. F. Hasler, Dec 03 2014

Extensions

G.f. corrected by Klaus Brockhaus, Sep 18 2009

A161728 a(n) = ((3+sqrt(3))*(4+sqrt(3))^n-(3-sqrt(3))*(4-sqrt(3))^n)/sqrt(12).

Original entry on oeis.org

1, 7, 43, 253, 1465, 8431, 48403, 277621, 1591729, 9124759, 52305595, 299822893, 1718610409, 9851185663, 56467549987, 323674986277, 1855321740385, 10634799101479, 60959210186827, 349421293175389, 2002900612974361, 11480728092514831, 65808116771451955, 377215468968922837
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

Keywords

Comments

Fourth binomial transform of A162436, inverse binomial transform of A162272.
The inverse binomial transform yields A030192. The binomial transform yields A162272. - R. J. Mathar, Jul 07 2009

Crossrefs

Programs

  • PARI
    F=nfinit(x^2-3); for(n=0, 20, print1(nfeltdiv(F, ((3+x)*(4+x)^n-(3-x)*(4-x)^n), (2*x))[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
    
  • PARI
    Vec((1-x)/(1-8*x+13*x^2)+O(x^25)) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = 8*a(n-1) - 13(n-2) for n > 1; a(0) = 1, a(1) = 7.
G.f.: (1 - x)/(1 - 8*x + 13*x^2). - Klaus Brockhaus, Jun 19 2009
E.g.f.: exp(4*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Dec 31 2022

Extensions

Extended beyond a(5) by Klaus Brockhaus, Jun 19 2009
Edited by Klaus Brockhaus, Jul 05 2009; M. F. Hasler, Dec 03 2014

A162813 a(n) = 3*a(n-2) for n > 2; a(1) = 5, a(2) = 3.

Original entry on oeis.org

5, 3, 15, 9, 45, 27, 135, 81, 405, 243, 1215, 729, 3645, 2187, 10935, 6561, 32805, 19683, 98415, 59049, 295245, 177147, 885735, 531441, 2657205, 1594323, 7971615, 4782969, 23914845, 14348907, 71744535, 43046721, 215233605, 129140163, 645700815, 387420489
Offset: 1

Views

Author

Klaus Brockhaus, Jul 20 2009

Keywords

Comments

Binomial transform is A162562.

Crossrefs

Programs

  • Magma
    [ n le 2 select 7-2*n else 3*Self(n-2): n in [1..34] ];
  • Mathematica
    nxt[{a_,b_}]:={b,3a}; NestList[nxt,{5,3},40][[All,1]] (* or *) LinearRecurrence[ {0,3},{5,3},40] (* Harvey P. Dale, May 29 2021 *)

Formula

a(n) = (3-2*(-1)^n)*3^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(5+3*x)/(1-3*x^2)

Extensions

a(35)-a(36) from Yifan Xie, Jul 20 2022

A162272 a(n) = ((1+sqrt(3))*(5+sqrt(3))^n + (1-sqrt(3))*(5-sqrt(3))^n)/2.

Original entry on oeis.org

1, 8, 58, 404, 2764, 18752, 126712, 854576, 5758096, 38780288, 261124768, 1758081344, 11836068544, 79682895872, 536435450752, 3611330798336, 24311728066816, 163668003104768, 1101822013577728, 7417524067472384, 49935156376013824, 336166034275745792, 2263086902485153792
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009

Keywords

Comments

Fifth binomial transform of A162436, binomial transform of A161728.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((1+r)*(5+r)^n+(1-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 02 2009
  • Maple
    seq(expand(((1+sqrt(3))*(5+sqrt(3))^n+(1-sqrt(3))*(5-sqrt(3))^n)*1/2), n = 0 .. 20); # Emeric Deutsch, Jul 05 2009
  • Mathematica
    LinearRecurrence[{10, -22}, {1, 8}, 40] (* Vincenzo Librandi, Feb 03 2018 *)

Formula

From Emeric Deutsch, Jul 05 2009: (Start)
G.f.: (1 - 2*x)/(1 - 10*x + 22*x^2).
a(n) = 10*a(n-1) - 22*a(n-2) for n >= 2; a(0)=1, a(1)=8. (End)
E.g.f.: exp(5*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Dec 31 2022

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 05 2009
Extended by Emeric Deutsch, Jul 05 2009

A162852 a(n) = 3*a(n-2) for n > 2; a(1) = 3, a(2) = -1.

Original entry on oeis.org

3, -1, 9, -3, 27, -9, 81, -27, 243, -81, 729, -243, 2187, -729, 6561, -2187, 19683, -6561, 59049, -19683, 177147, -59049, 531441, -177147, 1594323, -531441, 4782969, -1594323, 14348907, -4782969, 43046721, -14348907, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Jul 14 2009

Keywords

Comments

Third binomial transform is A162560.
Equivalently, 3^n followed by -3^(n-1), n > 0. - Muniru A Asiru, Oct 25 2018

Crossrefs

Programs

  • GAP
    a:=[3,-1];; for n in [3..25] do a[n]:=3*a[n-2]; od; a; # Muniru A Asiru, Oct 25 2018
  • Magma
    [ n le 2 select 7-4*n else 3*Self(n-2): n in [1..34] ];
    
  • Maple
    seq(op([3^n,-3^(n-1)]),n=1..18); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    Rest[CoefficientList[Series[x*(3-x)/(1-3*x^2), {x, 0, 40}], x]] (* or *) LinearRecurrence[{0,3}, {3,-1}, 40] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    x='x+O('x^40); Vec(x*(3-x)/(1-3*x^2)) \\ G. C. Greubel, Oct 24 2018
    

Formula

a(n) = ((4-5*(-1)^n)*3^(1/4*(2*n-1+(-1)^n)))/3.
G.f.: x*(3-x)/(1-3*x^2). [corrected by Klaus Brockhaus, Sep 18 2009]
E.g.f.: (1 - cosh(sqrt(3)*x) + 3*sqrt(3)*sinh(sqrt(3)*x))/3. - G. C. Greubel, Oct 24 2018

A164560 Partial sums of A164532.

Original entry on oeis.org

1, 5, 11, 35, 71, 215, 431, 1295, 2591, 7775, 15551, 46655, 93311, 279935, 559871, 1679615, 3359231, 10077695, 20155391, 60466175, 120932351, 362797055, 725594111, 2176782335, 4353564671, 13060694015, 26121388031, 78364164095
Offset: 1

Views

Author

Klaus Brockhaus, Aug 16 2009

Keywords

Comments

Interleaving of A164559 and A024062 without initial term 0.

Crossrefs

Cf. A164532, A164123 (partial sums of A162436), A164559 (6^n/3-1), A024062 (6^n-1), A026549.

Programs

  • Magma
    T:=[ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..28] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];

Formula

a(n) = 6*a(n-2)+5 for n > 2; a(1) = 1, a(2) = 5.
a(n) = (3-(-1)^n)*6^(1/4*(2*n-1+(-1)^n))/2-1.
G.f.: x*(1+4*x)/((1-x)*(1-6*x^2)).
a(n) = A026549(n) - 1.

A167710 a(n) = 10*2^n - 3*A083658(n+2).

Original entry on oeis.org

1, 5, 13, 35, 79, 185, 397, 875, 1831, 3905, 8053, 16835, 34399, 70985, 144157, 294875, 596311, 1212305, 2444293, 4947635, 9954319, 20085785, 40348717, 81228875, 162989191, 327572705, 656739733, 1318262435, 2641307839, 5296964585, 10608278077, 21259602875
Offset: 0

Views

Author

Paul Curtz, Nov 10 2009

Keywords

Comments

The sequence can be defined as the row sums of the triangle T(n,k)
.1;
.3,.2;
.3,.6,.4;
.9,.6,12,.8;
.9,18,12,24,16;
27,18,36,24,48,32;
with left column A162436, diagonal the powers of 2, and the recurrence T(n+2,k) = 3*T(n,k).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-6},{1,5,13},40] (* Harvey P. Dale, Oct 03 2014 *)

Formula

a(n+1) - 2*a(n) = A162436(n+2).
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3).
G.f.: (1+3*x)/((2*x-1) * (3*x^2-1)). - R. J. Mathar, Feb 27 2010

Extensions

Replaced cross-references by link to the index - R. J. Mathar, Feb 27 2010
Showing 1-10 of 12 results. Next