cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A023039 a(n) = 18*a(n-1) - a(n-2).

Original entry on oeis.org

1, 9, 161, 2889, 51841, 930249, 16692641, 299537289, 5374978561, 96450076809, 1730726404001, 31056625195209, 557288527109761, 10000136862780489, 179445175002939041, 3220013013190122249, 57780789062419261441
Offset: 0

Views

Author

Keywords

Comments

The primitive Heronian triangle 3*a(n) +- 2, 4*a(n) has the latter side cut into 2*a(n) +- 3 by the corresponding altitude and has area 10*a(n)*A060645(n). - Lekraj Beedassy, Jun 25 2002
Chebyshev polynomials T(n,x) evaluated at x=9.
{a(n)} gives all (unsigned, integer) solutions of Pell equation a(n)^2 - 80*b(n)^2 = +1 with b(n) = A049660(n), n >= 0.
{a(n)} gives all possible solutions for x in Pell equation x^2 - D*y^2 = 1 for D=5, D=20 and D=80. The corresponding values for y are A060645 (D=5), A207832 (D=20) and A049660 (D=80). - Herbert Kociemba, Jun 05 2022
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions > 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 24 2004
For all terms x of the sequence, 5*x^2 - 5 is a square, A004292(n)^2.
The a(n) are the x-values in the nonnegative integer solutions of x^2 - 5y^2 = 1, see A060645(n) for the corresponding y-values. - Sture Sjöstedt, Nov 29 2011
Rightmost digits alternate repeatedly: 1 and 9 in fact, a(2) = 18*9 - 1 == 1 (mod 10); a(3) = 18*1 - 9 == 9 (mod 10) therefore a(2n) == 1 (mod 10), a(2n+1) == 9 (mod 10). - Carmine Suriano, Oct 03 2013

Examples

			G.f. = 1 + 9*x + 161*x^2 + 2889*x^3 + 51841*x4 + 930249*x^5 + 16692641*x^6 + ...
		

Crossrefs

Row 2 of array A188645.
Row 4 of A322790.

Programs

  • Magma
    I:=[1, 9]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 13 2012
    
  • Maple
    a := n -> hypergeom([n, -n], [1/2], -4):
    seq(simplify(a(n)), n=0..16); # Peter Luschny, Jul 26 2020
  • Mathematica
    LinearRecurrence[{18, -1}, {1, 9}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
    CoefficientList[Series[(1-9*x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n) = fibonacci(6*n) / 2 + fibonacci(6*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    x='x+O('x^30); Vec((1-9*x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017

Formula

a(n) ~ (1/2)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->infinity} a(n)/a(n-1) = phi^6 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 9) = (S(n, 18) - S(n-2, 18))/2, with S(n, x) := U(n, x/2) and T(n, x), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 18)=A049660(n+1).
a(n) = sqrt(80*A049660(n)^2 + 1) (cf. Richardson comment).
a(n) = ((9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/2.
G.f.: (1 - 9*x)/(1 - 18*x + x^2).
a(n) = cosh(2*n*arcsinh(2)). - Herbert Kociemba, Apr 24 2008
a(n) = A001077(2*n). - Michael Somos, Aug 11 2009
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = 2*A167808(6*n+1) - A167808(6*n+3).
Limit_{k->infinity} a(n+k)/a(k) = a(n) + A060645(n)*sqrt(5).
Limit_{n->infinity} a(n)/A060645(n) = sqrt(5).
(End)
a(n) = (1/2)*A087215(n) = (1/2)*(sqrt(5) + 2)^(2*n) + (1/2)*(sqrt(5) - 2)^(2*n).
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1/8. Compare with A005248, A002878 and A075796. - Peter Bala, Nov 29 2013
a(n) = 2*A115032(n-1) - 1 = S(n, 18) - 9*S(n-1, 18), with A115032(-1) = 1, and see the above formula with S(n, 18) using its recurrence. - Wolfdieter Lang, Aug 22 2014
a(n) = A128052(3n). - A.H.M. Smeets, Oct 02 2017
a(n) = A049660(n+1) - 9*A049660(n). - R. J. Mathar, May 24 2018
a(n) = hypergeom([n, -n], [1/2], -4). - Peter Luschny, Jul 26 2020
a(n) = L(6*n)/2 for L(n) the Lucas sequence A000032(n). - Greg Dresden, Dec 07 2021
a(n) = cosh(6*n*arccsch(2)). - Peter Luschny, May 25 2022

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Nov 08 2002
Sture Sjöstedt's comment corrected and reformulated by Wolfdieter Lang, Aug 24 2014

A178381 Number of paths of length n starting at initial node of the path graph P_9.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0

Views

Author

Johannes W. Meijer, May 27 2010, May 29 2010

Keywords

Comments

Counts all paths of length n, n>=0, starting at initial node on the path graph P_9, see the Maple program.
The a(n) represent the number of possible chess games, ignoring the fifty-move and the triple repetition rules, after n moves by White in the following position: White Ka1, Nh1, pawns a2, b6, c2, d6, f2, g3 and g4; Black Ka8, Bc8, pawns a3, b7, c3, d7, f3 and g5.
The path graphs P_(2*p) have as limit(a(n+1)/a(n), n =infinity) = 2 resp. hypergeom([(p-1)/(2*p+1),(p+2)/(2*p+1)],[1/2],3/4) and the path graphs P_(2*p+1) have as limit(a(n+1)/a(n), n =infinity) = 1+cos(Pi/(p+1)), p>=1; see the crossrefs. - Johannes W. Meijer, Jul 01 2010

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
		

Crossrefs

This is row 9 of A094718.
a(2*n) = A147748(n) and a(2*n+1) = A081567(n).
a(4*n+2) = A109106(n) and a(4*n+3) = A179135(n).
Cf. A000007 (P_1), A000012 (P_2), A016116 (P_3), A000045 (P_4), A038754 (P_5), A028495 (P_6), A030436 (P_7), A061551 (P_8), this sequence (P_9), A336675 (P_10), A336678 (P_11), and A001405 (P_infinity).
Cf. A216212 (P_9 starting in the middle).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
  • Maple
    with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
    r := j -> (-1)^(j/10) - (-1)^(1-j/10):
    a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
  • Mathematica
    CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
    

Formula

G.f.: (1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4) for n>=5 with a(0)=1, a(1)=1, a(2)=2, a(3)=3 and a(4)=6.
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x / (1 - x / (1 + x / (1 + x)))))))). - Michael Somos, Feb 08 2015

A179133 Denominators of A178381(4*n+3)/A178381(4*n+2).

Original entry on oeis.org

2, 4, 5, 26, 68, 89, 466, 1220, 1597, 8362, 21892, 28657, 150050, 392836, 514229, 2692538, 7049156, 9227465, 48315634, 126491972, 165580141, 866988874, 2269806340, 2971215073, 15557484098, 40730022148, 53316291173, 279167724890
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A128052.

Crossrefs

Programs

  • Maple
    with(GraphTheory): nmax:=120; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+3)/A178381(4*n+2)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3],
    Fibonacci[6 n + 5]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
    LinearRecurrence[{0,0,18,0,0,-1},{2,4,5,26,68,89},30] (* Harvey P. Dale, Oct 08 2024 *)

Formula

a(n) = A179134(n)*A153727(n+1)/2.
Lim_{n->infinity} A128052(n+1)/A179133(n) = 1+cos(Pi/5) = A296182.
From Colin Barker, Jun 27 2013: (Start)
G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)).
a(n) = 18*a(n-3)-a(n-6). (End)
From Greg Dresden, Oct 16 2021: (Start)
a(3*n) = 2*Fibonacci(6*n+1),
a(3*n+1) = 2*Fibonacci(6*n+3),
a(3*n+2) = Fibonacci(6*n+5). (End)

A179131 Numerators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 5, 25, 65, 85, 445, 1165, 1525, 7985, 20905, 27365, 143285, 375125, 491045, 2571145, 6731345, 8811445, 46137325, 120789085, 158114965, 827900705, 2167472185, 2837257925, 14856075365, 38893710245, 50912527685, 266581455865
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the denominators see A179132.

Crossrefs

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= numer(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = 5*A167808(2*n+1) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(4*x^6+5*x^5+5*x^4-47*x^3-25*x^2-5*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A179132 Denominators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 3, 14, 36, 47, 246, 644, 843, 4414, 11556, 15127, 79206, 207364, 271443, 1421294, 3720996, 4870847, 25504086, 66770564, 87403803, 457652254, 1198149156, 1568397607, 8212236486, 21499914244, 28143753123, 147362604494
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A179131.

Crossrefs

Cf. A128052 and A179133.

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    LinearRecurrence[{0,0,18,0,0,-1},{1,3,14,36,47,246,644},30] (* Harvey P. Dale, Jun 11 2022 *)

Formula

a(n) = A069705(n-1)*A128052(n) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(3*x^6+6*x^5+7*x^4-18*x^3-14*x^2-3*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A179135 a(n) = (3-sqrt(5))*((3+sqrt(5))/10)^(-n)/2+(3+sqrt(5))*((3-sqrt(5))/10)^(-n)/2.

Original entry on oeis.org

3, 35, 450, 5875, 76875, 1006250, 13171875, 172421875, 2257031250, 29544921875, 386748046875, 5062597656250, 66270263671875, 867489013671875, 11355578613281250, 148646453857421875, 1945807342529296875
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Crossrefs

Cf. A109106.

Programs

  • Maple
    with(GraphTheory): nmax:=72; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax/4-1 do a(n):= A178381(4*n+3) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = A178381(4*n+3).
G.f.: (3-10*z)/(1-15*z+25*z^2).
Limit(a(n+k)/a(k), k=infinity) = A000351(n)*A130196(n)/(A128052(n) - A167808(2*n)*sqrt(5)).
Limit(A128052(n)/A167808(2*n),n=infinity) = sqrt(5).
a(n) = 5^n*Lucas(2*(n+1)). - Ehren Metcalfe, Apr 22 2018

A128053 a(n)=A128056(n)/A128055(n).

Original entry on oeis.org

1, -3, -3, 7, 7, -9, -9, 47, 47, -123, -123, 161, 161, -843, -843, 2207, 2207, -2889, -2889, 15127, 15127, -39603, -39603, 51841, 51841, -271443, -271443, 710647, 710647, -930249, -930249, 4870847, 4870847, -12752043, -12752043
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Crossrefs

Cf. A128052.

Formula

a(n)=(-1)^C(n+1,2)*(F(n-1)+F(n+1))(5/6-cos(pi*n/3)/3)(1+(-1)^n)/2+(F(n)+F(n+2))(5/6-cos(pi*(n+1)/3)/3)(1-(-1)^n)/2.
Empirical g.f.: -(x-1) * (x^10-2*x^9-5*x^8+2*x^7+9*x^6+9*x^4+2*x^3-5*x^2-2*x+1) / ((x^4+3*x^2+1)*(x^8-3*x^6+8*x^4-3*x^2+1)). - Colin Barker, Jun 27 2013

A179134 a(n) = (F(2*n-1) + F(2*n+2)) * (5/6 - cos(2*Pi*n/3)/3), where F(n) = Fibonacci(n).

Original entry on oeis.org

1, 4, 10, 13, 68, 178, 233, 1220, 3194, 4181, 21892, 57314, 75025, 392836, 1028458, 1346269, 7049156, 18454930, 24157817, 126491972, 331160282, 433494437, 2269806340, 5942430146, 7778742049, 40730022148, 106632582346
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Crossrefs

Cf. A128052, A000045 (Fibonacci numbers).
Appears in A179133.

Programs

  • Maple
    with(combinat): nmax:=28; for n from 0 to nmax do a(n):=(fibonacci(2*n-1)+fibonacci(2*n+2))*(5/6-cos(2*Pi*n/3)/3) od: seq(a(n),n=0..nmax);

Formula

a(n) = 18*a(n-3)-a(n-6). G.f.: -(2*x^5+4*x^4+5*x^3-10*x^2-4*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013
Showing 1-8 of 8 results.