cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A130073 Numbers k such that k divides 5^k - 3^k - 2^k = A130072(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 25, 27, 29, 31, 32, 36, 37, 41, 43, 44, 45, 47, 48, 53, 54, 59, 61, 64, 67, 71, 72, 73, 75, 79, 81, 83, 89, 95, 96, 97, 101, 103, 107, 108, 109, 113, 125, 127, 128, 131, 133, 135, 137, 139, 144, 149, 151
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2007

Keywords

Comments

All primes are the terms of a(n). Quotients A130072(p)/p for p = Prime(n) are listed in A130075(n) = {6,30,570,10830,4422630,93776970,44871187170,1003806502230,...}. p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0. Nonprimes n such that n divides A130072(n) are listed in A130074(n) = {1,4,6,8,9,12,15,16,18,24,25,27,32,36,44,45,48,54,64,72,75,81,95,96,...} which apparently include all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[(PowerMod[5,#,# ]-PowerMod[3,#,# ]-PowerMod[2,#,# ])/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==Mod(3,n)^n+Mod(2,n)^n \\ Charles R Greathouse IV, Nov 04 2016

A130074 Nonprimes k such that k divides 5^k - 3^k - 2^k = A130072(k).

Original entry on oeis.org

1, 4, 6, 8, 9, 12, 15, 16, 18, 24, 25, 27, 32, 36, 44, 45, 48, 54, 64, 72, 75, 81, 95, 96, 108, 125, 128, 133, 135, 144, 162, 175, 192, 216, 225, 243, 256, 264, 288, 324, 325, 361, 375, 384, 405, 432, 475, 486, 512, 561, 576, 594, 618, 625, 648, 675, 704, 729, 768
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2007

Keywords

Comments

Numbers k such that k divides A130072(k) are listed in A130073(n) = {1,2,3,4,5,6,7,8,9,11,12,13,15,16,17,18,19,23,24,25,27,29,31,32,36,37,41,43,...}, which includes all primes. a(n) includes nonprimes in A130073(n). p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0. It appears that a(n) includes all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],!PrimeQ[ # ]&&IntegerQ[(PowerMod[5,#,# ]-PowerMod[3,#,# ]-PowerMod[2,#,# ])/# ]&]

A135158 a(n) = 5^n - 3^n - 2^n.

Original entry on oeis.org

-1, 0, 12, 90, 528, 2850, 14832, 75810, 383808, 1932930, 9705552, 48648930, 243605088, 1219100610, 6098716272, 30503196450, 152544778368, 762810181890, 3814309582992, 19072323542370, 95363943807648, 476826695752770, 2384154405761712, 11920834803510690, 59604362329076928, 298022376554789250
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Comments

Essentially the same as A130072. - Zak Seidov, Oct 03 2011

Examples

			a(4) = 528 because 5^4 = 625, 3^4 = 81, 2^4 = 16 and 625 - 81 - 16 = 528.
		

Crossrefs

Programs

Formula

G.f.: ( 1+19*x^2-10*x ) / ( (3*x-1)*(2*x-1)*(5*x-1) ).
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Zak Seidov, Oct 03 2011
E.g.f.: exp(5*x) - exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016

Extensions

More terms from Vincenzo Librandi, Dec 15 2010

A130076 Primes p such that p^2 divides 5^p - 3^p - 2^p.

Original entry on oeis.org

2, 3, 5, 19
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2007

Keywords

Comments

For a prime p, p divides A130072(p) = 5^p - 3^p - 2^p. Quotients A130072(p)/p are listed in A130075.
If p^2 divides A130072(p), then p^(k+1) divides A130072(p^k) for every k>0. For p = 19, even 19^(k+2) divides A130072(p^k).
Numbers n such that n divides A130072(n) are listed in A130073. Nonprimes n such that n divides A130072(n) are listed in A130074, which apparently include all powers p^k of primes p = {2,3,5,19} for k>1 and all powers of numbers of the form 2^k*3^m, 3^k*5^m, 5^k*19^m.
No other terms below 10^11. - Max Alekseyev, Dec 06 2010

Examples

			p^2 divides A130072(p) = 5^p - 3^p - 2^p for prime p = {2,3,5,19}, quotients A130072(p)/p^2 are {3,10,114,52831921170}.
		

Crossrefs

Programs

  • Mathematica
    fQ[p_]:=Mod[PowerMod[5,p,p^2]-PowerMod[3,p,p^2]-PowerMod[2,p,p^2],p^2]==0 (* Robert G. Wilson v, Mar 14 2011 *)
  • PARI
    forprime(p=2,1e9,if(Mod(5,p^2)^p==Mod(3,p^2)^p+Mod(2,p^2)^p,print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011

Extensions

Edited by Max Alekseyev, Dec 05 2010

A130075 a(n) = (5^p - 3^p - 2^p)/p, where p = prime(n).

Original entry on oeis.org

6, 30, 570, 10830, 4422630, 93776970, 44871187170, 1003806502230, 518297165370030, 6422911941109705770, 150213298561349961630, 1966475018690546370358170, 1109139879321302763891656370
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2007

Keywords

Comments

p divides 5^p - 3^p - 2^p = A130072(p) for prime p.
p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0.
2 divides a(n). 3 divides a(n). 5 divides a(n) for n>1. 19 divides a(n) for n>2. 19^2 divides a(n) for n in A091178(n) or prime(n) in A002476.

Crossrefs

Programs

  • Mathematica
    Table[(5^Prime[n]-3^Prime[n]-2^Prime[n])/Prime[n],{n,1,20}]
    (5^#-3^#-2^#)/#&/@Prime[Range[20]] (* Harvey P. Dale, May 02 2012 *)

Formula

a(n) = (5^prime(n) - 3^prime(n) - 2^prime(n))/prime(n).
a(n) = A130072(prime(n))/prime(n).

A343115 Numbers k such that k^2 divides 5^k - 3^k - 2^k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 12, 15, 19, 24, 95, 361, 876
Offset: 1

Views

Author

Thomas Ordowski, Apr 05 2021

Keywords

Comments

Are there only finitely many such numbers?
Primes in the sequence are A130076.
Next term, if it exists, exceeds 5*10^8. - Jon E. Schoenfield, May 07 2021

Crossrefs

Programs

  • Maple
    q:= k-> is(0=5&^k-3&^k-2&^k mod k^2):
    select(q, [$1..1000])[];  # Alois P. Heinz, May 07 2021
  • Mathematica
    Select[Range[1000], Mod[PowerMod[2, #, #^2] + PowerMod[3, #, #^2],#^2] == PowerMod[5, #, #^2] &] (* Amiram Eldar, Apr 05 2021 *)
Showing 1-6 of 6 results.