cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131091 Partial sums of A131707.

Original entry on oeis.org

1, 2, 5, 12, 19, 20, 29, 38, 45, 48, 51, 60, 61, 62, 65, 72, 79, 80, 89, 98, 105, 108, 111, 120, 121, 122, 125, 132, 139, 140, 149, 158, 165, 168, 171, 180, 181, 182, 185, 192, 199, 200, 209, 218, 225, 228, 231, 240, 241, 242, 245, 252, 259, 260, 269, 278, 285
Offset: 0

Views

Author

Paul Curtz, Sep 24 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[PadRight[{},60,{1,1,3,7,7,1,9,9,7,3,3,9}]] (* Harvey P. Dale, Jul 30 2025 *)

Formula

a(n) = Sum_{i=0..n} A131707(i), where A131707(n) = A001333(n) mod 10.
O.g.f.: (9x^6-6x^5+4x^3+2x^2+1)/((x-1)^2*(x^2+1)*(x^4-x^2+1)). - R. J. Mathar, Jul 16 2008
a(n) = 2*a(n-1) - a(n-2) - a(n-6) + 2*a(n-7) - a(n-8) for n > 7. - Chai Wah Wu, Jan 09 2021

Extensions

Edited by R. J. Mathar, Jul 16 2008

A001903 Final digit of 7^n.

Original entry on oeis.org

1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3, 1
Offset: 0

Views

Author

Keywords

Comments

Period 4: repeat [1, 7, 9, 3]. - Joerg Arndt, Aug 12 2014

Crossrefs

Programs

Formula

a(n) = 7^n mod 10. - Zerinvary Lajos, Nov 03 2009
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2.
G.f.: ( 1+6*x+3*x^2 ) / ( (1-x)*(1+x^2) ). (End)
a(n) = 10 - a(n-2) for n > 1. - Vincenzo Librandi, Feb 08 2011
From Bruno Berselli, Feb 08 2011: (Start)
a(n) = 5 - (2-i)*(-i)^n - (2+i)*i^n, where i=sqrt(-1).
a(n) = A001148(A159966(n)). (End)
a(n) = A010879(A000420(n)). - Michel Marcus, Jul 06 2016
E.g.f.: 2*sin(x) - 4*cos(x) + 5*exp(x). - Ilya Gutkovskiy, Jul 06 2016

A131711 Period 12: repeat 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1.

Original entry on oeis.org

0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Final digits of Pell numbers. First differences: 1, 1, 3, -3, 7, -9, 9, -1, -3, 3 -7, -1, 1 (cf. A131707).
Can be though of as 2 interlocking sequences, each of the form a(n) = a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) + a(n - 5).

Programs

Formula

G.f.: (x^8+8x^7+4x^6+5x^4+4x^2+2x+1)x/((1-x) (1+x) (x^2+x+1) (x^2-x+1) (x^4-x^2+1)). a(n) = |A131201(n)| = A000129(n) mod 10 = A000129(n)-10*A131727(n). [From R. J. Mathar, Sep 20 2008]
a(n) = 25/6 -4*cos(Pi*n/6)/sqrt(3) -sqrt(3)*sin(Pi*n/6) -5*cos(Pi*n/3)/3 -5*cos(2*Pi*n/3)/3 +4*cos(5*Pi*n/6)/sqrt(3) +sqrt(3)*sin(5*Pi*n/6) -5*(-1)^n/6. - R. J. Mathar, Oct 08 2011

A131712 Period 4: repeat [1, 3, 7, 9].

Original entry on oeis.org

1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Decimal expansion of 1379/9999. - Klaus Brockhaus, May 21 2010

Crossrefs

Cf. A178148 (decimal expansion of (243+17*sqrt(285))/402). - Klaus Brockhaus, May 21 2010

Programs

Formula

G.f.: (1+3*x+7*x^2+9*x^3)/((1-x)*(x+1)*(1+x^2)). - R. J. Mathar, Nov 14 2007
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = 5 - 3*cos(n*Pi/2) - cos(n*Pi) - 3*sin(n*Pi/2) - I*sin(n*Pi). (End)

Extensions

More terms from Klaus Brockhaus, May 21 2010

A131036 First differences of A131711.

Original entry on oeis.org

1, 1, 3, -3, 7, -9, 9, -1, -3, 3, -7, -1, 1, 1, 3, -3, 7, -9, 9, -1, -3, 3, -7, -1, 1, 1, 3, -3, 7, -9, 9, -1, -3, 3, -7, -1, 1, 1, 3, -3, 7, -9, 9, -1, -3, 3, -7, -1
Offset: 0

Views

Author

Paul Curtz, Sep 23 2007

Keywords

Comments

The equivalent operation on A001333 yields last digits A131707 and their first differences A131715.

Crossrefs

Cf. A131711.

Programs

  • Mathematica
    Differences[PadRight[{},120,{0,1,2,5,2,9,0,9,8,5,8,1}]] (* Harvey P. Dale, Dec 29 2014 *)

Formula

a(n) = a(n-12).
From Chai Wah Wu, Jan 09 2021: (Start)
a(n) = - a(n-1) - a(n-4) - a(n-5) - a(n-8) - a(n-9) for n > 8.
G.f.: (x^8 + 8*x^7 + 4*x^6 + 5*x^4 + 4*x^2 + 2*x + 1)/(x^9 + x^8 + x^5 + x^4 + x + 1). (End)

Extensions

Edited by R. J. Mathar, Jul 07 2008

A131037 Sequence A001333 with last digits set to zero.

Original entry on oeis.org

0, 0, 0, 0, 10, 40, 90, 230, 570, 1390, 3360, 8110, 19600, 47320, 114240, 275800, 665850, 1607520, 3880890, 9369310, 22619530, 54608390, 131836320, 318281030, 768398400, 1855077840, 4478554080, 10812186000, 26102926090, 63018038200
Offset: 0

Views

Author

Paul Curtz, Sep 23 2007

Keywords

Formula

a(n)=A001333(n)-A131707(n) = 10*A131607(n).

Extensions

Edited by R. J. Mathar, Jul 07 2008
Showing 1-6 of 6 results.