cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A100220 Decimal expansion of Product_{k>=1} (1 - 1/3^k).

Original entry on oeis.org

5, 6, 0, 1, 2, 6, 0, 7, 7, 9, 2, 7, 9, 4, 8, 9, 4, 4, 9, 6, 9, 7, 9, 2, 2, 4, 3, 3, 1, 4, 1, 4, 0, 0, 1, 4, 3, 7, 9, 7, 3, 6, 3, 3, 3, 7, 9, 8, 3, 6, 2, 4, 6, 4, 4, 6, 2, 9, 5, 6, 2, 9, 7, 3, 1, 7, 5, 3, 3, 9, 6, 3, 0, 8, 9, 0, 3, 3, 7, 9, 4, 7, 0, 7, 7, 1, 6, 9, 1, 8, 7, 7, 0, 5, 3, 6, 7, 4, 3, 3, 4, 8
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Comments

Limit of the probability that a random N X N matrix, with entries chosen independently and uniformly from the field F_3, is nonsingular [Morrison (2006)]. - L. Edson Jeffery, Jan 22 2012

Examples

			0.56012607792794894496979224331414001437973633379836...
		

Crossrefs

Programs

  • Mathematica
    N[(3^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[3]]^(1/3))/2^(1/3)]
    N[QPochhammer[1/3,1/3]] (* G. C. Greubel, Nov 27 2015 *)

Formula

exp(-Sum_{k > 0} sigma_1(k)/k/3^k) = exp(-Sum_{k > 0} A000203(k)/k/3^k). - Hieronymus Fischer, Aug 07 2007
Product_{k >= 1} (1 - 1/3^k) = (1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
From Peter Bala, Jan 18 2021: (Start)
Constant C = (1 - 1/3)*Sum_{n >= 0} (-1/3)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*Sum_{n >= 0} (-1/9)^n/Product_{k = 1..n} (3^k - 1);
C = (1 - 1/3)*(1 - 1/9)*(1 - 1/27)*Sum_{n >= 0} (-1/27)^n/Product_{k = 1..n} (3^k - 1), and so on. (End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(3)) * exp(log(3)/24 - Pi^2/(6*log(3))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027871(n). (End)

A100221 Decimal expansion of Product_{k>=1} (1-1/4^k).

Original entry on oeis.org

6, 8, 8, 5, 3, 7, 5, 3, 7, 1, 2, 0, 3, 3, 9, 7, 1, 5, 4, 5, 6, 5, 1, 4, 3, 5, 7, 2, 9, 3, 5, 0, 8, 1, 8, 4, 6, 7, 5, 5, 4, 9, 8, 1, 9, 3, 7, 8, 3, 3, 5, 7, 3, 5, 3, 4, 0, 1, 5, 7, 2, 3, 2, 5, 7, 7, 5, 3, 3, 1, 9, 8, 4, 5, 0, 7, 9, 8, 6, 7, 5, 1, 2, 4, 8, 0, 3, 3, 4, 6, 0, 4, 8, 1, 4, 2, 8, 8, 7, 9, 0, 5
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.68853753712033971545651435729350818467554981937833...
		

Crossrefs

Programs

  • Mathematica
    EllipticThetaPrime[1, 0, 1/2]^(1/3)/2^(1/4)
    N[QPochhammer[1/4]] (* G. C. Greubel, Nov 30 2015 *)
    RealDigits[Fold[Times,1-1/4^Range[1000]],10,110][[1]] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    prodinf(x=1, 1-1/4^x) \\ Altug Alkan, Dec 01 2015

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*4^k)) where sigma_1() is A000203(). - Hieronymus Fischer, Aug 07 2007
Equals (1/4; 1/4){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(Pi/log(2)) * exp(log(2)/12 - Pi^2/(12*log(2))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027637(n). (End)

A259149 Decimal expansion of phi(exp(-2*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 8, 1, 2, 9, 0, 6, 9, 9, 2, 5, 9, 5, 8, 5, 1, 3, 2, 7, 9, 9, 6, 2, 3, 2, 2, 2, 4, 5, 2, 7, 3, 8, 7, 8, 1, 3, 0, 7, 3, 8, 4, 3, 5, 3, 6, 5, 8, 1, 6, 4, 6, 1, 7, 5, 4, 0, 7, 8, 1, 4, 0, 2, 8, 2, 9, 9, 8, 5, 8, 0, 4, 6, 6, 0, 1, 9, 2, 8, 0, 7, 3, 5, 7, 1, 8, 2, 4, 4, 7, 3, 8, 7, 7, 7, 3, 7, 9, 3, 7, 7, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99812906992595851327996232224527387813073843536581646175407814028299858...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-2Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-2*Pi)) = exp(Pi/12)*Gamma(1/4)/(2*Pi^(3/4)).

A259148 Decimal expansion of phi(exp(-Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 5, 4, 9, 1, 8, 7, 8, 9, 9, 8, 7, 6, 7, 4, 1, 0, 3, 7, 5, 1, 2, 3, 3, 9, 7, 8, 1, 1, 0, 2, 9, 1, 0, 7, 7, 6, 3, 2, 7, 1, 5, 3, 7, 3, 8, 0, 7, 8, 0, 5, 2, 8, 3, 1, 4, 8, 7, 9, 9, 1, 9, 1, 6, 7, 6, 0, 9, 4, 0, 3, 5, 6, 8, 6, 7, 1, 4, 5, 3, 9, 5, 3, 4, 9, 8, 1, 5, 1, 8, 6, 7, 4, 4, 6, 1, 0, 9, 8, 7, 6, 7, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.954918789987674103751233978110291077632715373807805283148799191676094...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi]], 10, 104] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi)) = exp(Pi/24)*Gamma(1/4)/(2^(7/8)*Pi^(3/4)).
Equals 1/exp(A255695). - Hugo Pfoertner, May 28 2025

A259150 Decimal expansion of phi(exp(-4*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 9, 9, 9, 6, 5, 1, 2, 6, 4, 5, 4, 8, 2, 2, 3, 4, 2, 9, 5, 0, 9, 8, 9, 1, 6, 8, 5, 2, 1, 1, 9, 2, 4, 7, 6, 5, 7, 5, 0, 9, 7, 8, 9, 3, 2, 6, 3, 4, 5, 8, 4, 8, 4, 4, 7, 7, 3, 2, 6, 9, 1, 0, 0, 4, 7, 2, 0, 1, 5, 2, 5, 7, 6, 7, 4, 4, 8, 2, 0, 3, 2, 6, 8, 9, 6, 2, 4, 9, 7, 3, 0, 1, 1, 9, 7, 2, 8, 1, 0, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.99999651264548223429509891685211924765750978932634584844773269100472...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-4*Pi]], 10, 103] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-4*Pi)) = exp(Pi/6)*Gamma(1/4)/(2^(11/8)*Pi^(3/4)).
A259150 = A259148 * exp(Pi/8)/sqrt(2). - Vaclav Kotesovec, Jul 03 2017

A259151 Decimal expansion of phi(exp(-8*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 8, 3, 8, 4, 4, 3, 2, 9, 0, 4, 4, 2, 7, 8, 8, 1, 4, 0, 9, 9, 8, 2, 7, 0, 9, 5, 9, 4, 8, 6, 9, 4, 5, 6, 7, 3, 8, 5, 2, 1, 9, 8, 5, 4, 3, 8, 7, 2, 7, 2, 5, 5, 8, 3, 6, 9, 9, 1, 5, 5, 2, 6, 6, 6, 2, 6, 9, 2, 7, 0, 0, 5, 5, 6, 6, 7, 5, 0, 6, 5, 2, 1, 7, 6, 4, 9, 3, 2, 7, 9, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.999999999987838443290442788140998270959486945673852198543872725583699...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-8*Pi]], 10, 103] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-8*Pi)) = (sqrt(2) - 1)^(1/4)*exp(Pi/3)*(Gamma(1/4)/(2^(29/16)*Pi^(3/4))).
A259151 = A259147 * exp(5*Pi/16)/2. - Vaclav Kotesovec, Jul 03 2017

A027877 a(n) = Product_{i=1..n} (9^i - 1).

Original entry on oeis.org

1, 8, 640, 465920, 3056435200, 180476385689600, 95912370410881024000, 458745798479390789599232000, 19747501938318761090457052119040000, 7650586837724400321220283274999910891520000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027878 (q=10), A027879 (q=11), A027880 (q=12).
Cf. A132037.

Programs

  • Magma
    [1] cat [&*[ 9^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    Abs@QPochhammer[9, 9, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = prod(i=1, n, 9^i-1); \\ Altug Alkan, Dec 24 2015

Formula

a(n) ~ c * 3^(n*(n+1)), where c = Product_{k>=1} (1-1/9^k) = A132037 = 0.876560354035964205836019838417862010106635101174... . - Vaclav Kotesovec, Nov 21 2015
From - G. C. Greubel, Dec 24 2015: (Start)
8^n * 10^(floor(n/2))|a(n), for n>=0.
a(n) = 9^(binomial(n+1,2))*(1/9;1/9){n}, where (a;q){n} is the q-Pochhammer symbol. (End)
a(n) = Product_{i=1..n} A024101(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 9^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 9^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132037. - Amiram Eldar, May 07 2023

A100222 Decimal expansion of Product_{k>=1} (1-1/5^k).

Original entry on oeis.org

7, 6, 0, 3, 3, 2, 7, 9, 5, 8, 7, 1, 2, 3, 2, 4, 2, 0, 1, 0, 1, 4, 8, 8, 2, 9, 6, 2, 9, 2, 6, 6, 5, 1, 5, 9, 4, 7, 4, 3, 4, 3, 9, 2, 8, 8, 7, 3, 2, 0, 5, 7, 9, 5, 1, 9, 8, 7, 7, 0, 9, 8, 4, 4, 0, 0, 8, 8, 8, 8, 5, 9, 9, 5, 3, 7, 5, 5, 2, 3, 3, 6, 5, 2, 7, 5, 1, 5, 3, 4, 0, 8, 6, 6, 1, 4, 3, 2, 3, 2, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.76033279587123242010148829629266515947434392887320...
		

Crossrefs

Programs

  • Mathematica
    (5^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[5]]^(1/3))/2^(1/3)
    N[QPochhammer[1/5,1/5]] (* G. C. Greubel, Dec 01 2015 *)
  • PARI
    prodinf(k=1, 1 - 1/(5^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*5^k)) = exp(-Sum_{k>0} A000203(k)/(k*5^k)). - Hieronymus Fischer, Aug 07 2007
Equals (1/5; 1/5){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(5)) * exp(log(5)/24 - Pi^2/(6*log(5))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(5))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027872(n). (End)

A132033 Product{0<=k<=floor(log_9(n)), floor(n/9^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 38, 40, 42, 44, 46, 48, 50, 52, 81, 84, 87, 90, 93, 96, 99, 102, 105, 144, 148, 152, 156, 160, 164, 168, 172, 176, 225, 230, 235, 240, 245, 250, 255, 260, 265, 324, 330, 336, 342, 348, 354, 360, 366, 372
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-9 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(85)=floor(85/9^0)*floor(85/9^1)*floor(85/9^2)=85*9*1=765; a(88)=792 since 88=107(base-9) and so a(88)=107*10*1(base-9)=88*9*1=792.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132032(p=8), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[Product[Floor[n/9^k],{k,0,Floor[Log[9,n]]}],{n,62}] (* James C. McMahon, Mar 03 2025 *)

Formula

Recurrence: a(n)=n*a(floor(n/9)); a(n*9^m)=n^m*9^(m(m+1)/2)*a(n).
a(k*9^m)=k^(m+1)*9^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_9(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_9(n)))/9^((1+floor(log_9(n)))*floor(log_9(n))/2); equality holds for n=k*9^m, 0=0. b(n) can also be written n^(1+floor(log_9(n)))/9^A000217(floor(log_9(n))).
Also: a(n)<=3^(1/4)*n^((1+log_9(n))/2)=1.316074013...*9^A000217(log_9(n)), equality holds for n=3*9^m, m>=0.
a(n)>c*b(n), where c=0.4689451783670236932832800... (see constant A132024).
Also: a(n)>c*2^((1-log_9(2))/2)*n^((1+log_9(n))/2)=0.4689451783670...*1.267747616...*9^A000217(log_9(n)).
lim inf a(n)/b(n)=0.4689451783670236932832800..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_9(n))/2)=0.4689451783670236932832800...*sqrt(2)/2^log_9(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_9(n))/2)=3^(1/4)=1.316074013..., for n-->oo.
lim inf a(n)/a(n+1)=0.4689451783670236932832800... for n-->oo (see constant A132025).

A003920 Order of universal Chevalley group B_n (3).

Original entry on oeis.org

24, 51840, 9170703360, 131569513308979200, 152915585868239728626892800, 14395932257291877030764312963579904000, 109777561863482259035023554842176139436811616256000
Offset: 1

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Programs

  • Mathematica
    B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[3, n], {n, 1, 7}] (* Amiram Eldar, Jun 23 2025 *)

Formula

a(n) = B(3,n) where B(q,n) = q^(n^2) * Product_{k=1..n}(q^(2*k)-1). - Sean A. Irvine, Sep 22 2015
a(n) = 2*A003927(n). - Amiram Eldar, Jun 23 2025
a(n) ~ c * 3^(2*n^2+n), where c = A132037. - Amiram Eldar, Jul 09 2025
Showing 1-10 of 20 results. Next