cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A196603 Decimal expansion of the least x>0 satisfying sec(x)=2x.

Original entry on oeis.org

6, 1, 0, 0, 3, 1, 2, 8, 4, 4, 6, 4, 1, 7, 5, 9, 7, 5, 3, 7, 0, 9, 6, 3, 0, 7, 3, 5, 1, 3, 4, 1, 0, 3, 2, 4, 6, 7, 3, 7, 2, 0, 9, 7, 9, 1, 1, 2, 1, 6, 9, 2, 3, 7, 8, 6, 3, 7, 5, 1, 6, 0, 7, 5, 3, 2, 8, 0, 9, 4, 8, 8, 6, 1, 0, 5, 1, 0, 6, 8, 8, 7, 8, 1, 4, 2, 4, 4, 1, 6, 0, 3, 4, 4, 4, 4, 1, 2, 4, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.61003128446417597537096307351341032...
		

Crossrefs

Cf. A196610.

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)

A196612 Decimal expansion of the least x>0 satisfying 2*sec(x)=x.

Original entry on oeis.org

5, 1, 1, 4, 1, 8, 2, 1, 8, 7, 8, 5, 5, 8, 1, 5, 8, 7, 4, 9, 1, 9, 7, 7, 5, 5, 4, 8, 9, 2, 6, 8, 0, 0, 7, 7, 3, 5, 0, 5, 6, 3, 6, 1, 9, 9, 8, 1, 4, 4, 3, 8, 7, 6, 0, 0, 4, 6, 6, 2, 1, 8, 7, 5, 9, 2, 6, 8, 6, 5, 7, 6, 6, 0, 3, 4, 2, 7, 2, 0, 0, 9, 7, 7, 5, 6, 4, 3, 8, 5, 9, 1, 9, 9, 5, 0, 9, 7, 9, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			5.11418218785581587491977554892680077350563...
		

Crossrefs

Cf. A196604.

Programs

  • Mathematica
    Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196612 *)
    t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196613 *)
    t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196614 *)
    t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]    (* A196615 *)
    t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196616 *)

A196604 Decimal expansion of the least x>0 satisfying sec(x)=3x.

Original entry on oeis.org

3, 5, 5, 5, 7, 5, 9, 8, 9, 3, 4, 2, 9, 7, 3, 3, 7, 2, 6, 2, 5, 6, 5, 3, 1, 0, 8, 5, 6, 5, 7, 7, 5, 9, 4, 8, 9, 7, 8, 5, 5, 2, 1, 8, 5, 7, 5, 8, 9, 9, 3, 9, 3, 4, 5, 5, 1, 7, 0, 1, 2, 6, 5, 8, 7, 6, 7, 3, 7, 1, 2, 4, 6, 6, 5, 8, 8, 8, 1, 7, 6, 0, 4, 7, 7, 3, 4, 1, 0, 3, 8, 8, 9, 1, 9, 0, 8, 1, 7, 0
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.3555759893429733726256531085657759489...
		

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)

A196605 Decimal expansion of the least x>0 satisfying sec(x)=4x.

Original entry on oeis.org

2, 5, 8, 5, 9, 8, 5, 8, 2, 2, 5, 4, 1, 8, 9, 4, 9, 0, 3, 0, 4, 4, 8, 2, 6, 1, 9, 5, 6, 1, 5, 2, 0, 2, 8, 1, 3, 3, 8, 5, 5, 2, 9, 6, 5, 3, 1, 6, 8, 2, 5, 7, 5, 3, 4, 3, 8, 8, 1, 7, 2, 8, 7, 4, 3, 7, 7, 4, 1, 3, 3, 0, 4, 9, 3, 9, 2, 6, 1, 8, 4, 4, 6, 4, 5, 3, 3, 9, 0, 5, 0, 8, 1, 5, 9, 4, 0, 9, 0, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.25859858225418949030448261956152028133855...
		

Crossrefs

Cf. A295255.

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)

A196606 Decimal expansion of the least x>0 satisfying sec(x)=5x.

Original entry on oeis.org

2, 0, 4, 2, 4, 5, 3, 7, 8, 7, 0, 4, 5, 3, 8, 9, 0, 1, 7, 2, 3, 4, 5, 9, 0, 5, 7, 0, 5, 5, 2, 8, 0, 9, 7, 7, 3, 4, 4, 5, 7, 3, 1, 1, 3, 0, 6, 3, 5, 9, 6, 9, 1, 1, 2, 8, 0, 3, 7, 9, 7, 1, 8, 5, 8, 3, 3, 0, 7, 9, 1, 4, 4, 2, 3, 6, 4, 3, 1, 1, 5, 3, 1, 5, 5, 7, 7, 4, 2, 6, 7, 8, 2, 1, 7, 0, 8, 0, 1, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.2042453787045389017234590570552809773445731130635969...
		

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)

A196607 Decimal expansion of the least x>0 satisfying sec(x)=6x.

Original entry on oeis.org

1, 6, 9, 0, 7, 7, 6, 4, 7, 3, 9, 8, 0, 1, 5, 1, 4, 9, 9, 9, 5, 2, 9, 5, 3, 6, 7, 6, 7, 2, 6, 2, 7, 8, 1, 0, 7, 4, 2, 1, 3, 4, 0, 7, 6, 9, 6, 9, 6, 5, 3, 7, 1, 7, 0, 5, 6, 2, 1, 0, 6, 7, 7, 0, 2, 8, 1, 3, 5, 0, 2, 5, 7, 5, 8, 9, 1, 6, 8, 6, 1, 8, 9, 9, 4, 5, 5, 6, 8, 0, 9, 5, 5, 1, 1, 9, 4, 7, 8, 0
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2011

Keywords

Examples

			0.169077647398015149995295367672627810742134076969653717056...
		

Programs

  • Mathematica
    Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196603 *)
    t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196604 *)
    t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196605 *)
    t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196606 *)
    t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196607 *)
  • PARI
    solve(x=0,1,6*x*cos(x)-1) \\ Charles R Greathouse IV, Aug 23 2021

A196613 Decimal expansion of the least x>0 satisfying 3*sec(x)=x.

Original entry on oeis.org

5, 3, 1, 2, 4, 6, 9, 7, 1, 1, 6, 5, 6, 5, 6, 7, 6, 9, 7, 3, 6, 6, 1, 5, 7, 9, 9, 8, 2, 5, 4, 4, 0, 3, 1, 8, 1, 1, 9, 1, 6, 9, 4, 1, 2, 2, 9, 2, 0, 7, 8, 3, 5, 5, 2, 4, 1, 2, 5, 6, 2, 2, 8, 3, 8, 4, 9, 0, 6, 5, 4, 7, 0, 5, 4, 7, 0, 2, 9, 2, 3, 6, 4, 4, 2, 8, 8, 2, 9, 8, 4, 8, 7, 2, 6, 5, 3, 2, 5, 2, 9
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2011

Keywords

Examples

			x=5.31246971165656769736615799825440318119169412292...
		

Programs

  • Mathematica
    Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196612 *)
    t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196613 *)
    t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196614 *)
    t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]    (* A196615 *)
    t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196616 *)

A196614 Decimal expansion of the least x>0 satisfying 4*sec(x)=x.

Original entry on oeis.org

5, 5, 2, 2, 4, 3, 4, 1, 0, 2, 5, 9, 1, 0, 2, 6, 9, 1, 6, 5, 1, 2, 7, 9, 3, 4, 7, 7, 1, 8, 0, 2, 2, 6, 4, 6, 1, 8, 3, 5, 3, 4, 4, 1, 0, 2, 2, 5, 1, 4, 9, 7, 9, 9, 3, 3, 7, 2, 2, 7, 1, 2, 5, 1, 6, 3, 5, 2, 4, 7, 7, 6, 4, 8, 3, 6, 4, 6, 0, 7, 0, 4, 5, 2, 7, 3, 5, 1, 7, 5, 4, 1, 6, 2, 1, 1, 0, 1, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2011

Keywords

Examples

			x=5.5224341025910269165127934771802264618...
		

Programs

  • Mathematica
    Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196612 *)
    t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196613 *)
    t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196614 *)
    t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]    (* A196615 *)
    t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196616 *)

A196615 Decimal expansion of the least x>0 satisfying 5*sec(x)=x.

Original entry on oeis.org

5, 7, 6, 2, 8, 0, 9, 4, 5, 6, 0, 9, 0, 9, 8, 8, 0, 3, 3, 0, 0, 7, 3, 0, 0, 1, 5, 2, 9, 9, 9, 9, 5, 3, 3, 5, 6, 6, 7, 6, 8, 1, 9, 6, 8, 0, 7, 1, 2, 0, 5, 6, 6, 6, 8, 0, 8, 3, 2, 4, 9, 4, 4, 8, 5, 3, 2, 7, 4, 1, 9, 7, 7, 9, 1, 4, 0, 1, 0, 3, 8, 1, 8, 6, 7, 5, 1, 3, 9, 0, 3, 4, 8, 4, 4, 7, 2, 6, 9, 2, 6, 9, 7, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2011

Keywords

Examples

			x=5.762809456090988033007300152999953356676...
		

Programs

  • Mathematica
    Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196612 *)
    t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196613 *)
    t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196614 *)
    t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]    (* A196615 *)
    t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196616 *)

A196616 Decimal expansion of the least x>0 satisfying 6*sec(x)=x.

Original entry on oeis.org

6, 7, 6, 2, 6, 9, 7, 9, 4, 4, 6, 8, 2, 5, 4, 4, 5, 0, 0, 9, 9, 7, 9, 3, 6, 0, 1, 4, 4, 6, 0, 8, 1, 0, 9, 4, 9, 1, 7, 6, 5, 8, 8, 3, 1, 7, 6, 0, 2, 4, 4, 0, 0, 5, 2, 4, 0, 6, 2, 0, 6, 8, 3, 3, 1, 6, 6, 5, 6, 4, 5, 4, 2, 8, 3, 8, 2, 8, 2, 5, 4, 2, 7, 9, 8, 1, 4, 2, 7, 3, 6, 3, 0, 7, 4, 2, 3, 1, 4, 9, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2011

Keywords

Examples

			x=6.7626979446825445009979360144608109491765883176...
		

Programs

  • Mathematica
    Plot[{1/x, 2/x, 3/x, 4/x, Cos[x]}, {x, 0, 2 Pi}]
    t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A133868 *)
    t = x /. FindRoot[2/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196612 *)
    t = x /. FindRoot[3/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196613 *)
    t = x /. FindRoot[4/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196614 *)
    t = x /. FindRoot[5/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]    (* A196615 *)
    t = x /. FindRoot[6/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
    RealDigits[t]   (* A196616 *)
Showing 1-10 of 17 results. Next