A350259
Triangle read by rows. T(n, k) = n! * BellPolynomial(n, k).
Original entry on oeis.org
1, 0, 1, 0, 4, 12, 0, 30, 132, 342, 0, 360, 2256, 7416, 18144, 0, 6240, 54480, 223920, 651360, 1545600, 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560, 0, 4420080, 71638560, 446357520, 1792405440, 5552593200, 14460979680, 33232948560
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 4, 12
[3] 0, 30, 132, 342
[4] 0, 360, 2256, 7416, 18144
[5] 0, 6240, 54480, 223920, 651360, 1545600
[6] 0, 146160, 1749600, 8892720, 30496320, 82911600, 193030560
-
A350259 := (n, k) -> ifelse(n = 0, 1, n! * BellB(n, k)):
seq(seq(A350259(n, k), k = 0..n), n = 0..7);
-
T[n_, k_] := n! BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A323128
Number T(n,k) of colored set partitions of [n] where elements of subsets have distinct colors and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 0, 1, 18, 30, 0, 1, 74, 360, 360, 0, 1, 310, 3450, 8880, 6240, 0, 1, 1382, 31770, 160080, 271800, 146160, 0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080, 0, 1, 32398, 2918244, 42687960, 214527600, 468669600, 460474560, 166924800
Offset: 0
T(3,2) = 18: 1a|2a3b, 1a|2b3a, 1b|2a3b, 1b|2b3a, 1a3b|2a, 1b3a|2a, 1a3b|2b, 1b3a|2b, 1a2b|3a, 1b2a|3a, 1a2b|3b, 1b2a|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 4;
0, 1, 18, 30;
0, 1, 74, 360, 360;
0, 1, 310, 3450, 8880, 6240;
0, 1, 1382, 31770, 160080, 271800, 146160;
0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080;
...
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
*binomial(n-1, j-1)*A(n-j, k), j=1..min(k, n)))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[k!/(k - j)! Binomial[n - 1, j - 1]* A[n - j, k], {j, Min[k, n]}]];
T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A152474
Triangle T(n,k) read by rows: Sum_{k=0..binomial(n,2)} T(n,k)*q^k = n!*Sum_{pi} faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1) + 2*e(2) + ... + n*e(n) = n and faq(i,q) = Product_{j=1..i} (q^j-1)/(q-1), i = 1..n.
Original entry on oeis.org
1, 1, 3, 1, 13, 8, 8, 1, 73, 63, 89, 78, 41, 15, 1, 501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1, 4051, 5225, 9734, 13799, 18709, 20441, 20520, 18101, 14831, 10200, 5891, 3199, 1109, 314, 35, 1, 37633, 55656, 112370, 177457, 270746, 352969, 442897
Offset: 0
Triangle T(n,k) begins:
1;
1;
3, 1;
13, 8, 8, 1;
73, 63, 89, 78, 41, 15, 1;
501, 544, 909, 1095, 1200, 842, 680, 315, 129, 24, 1;
...
-
{T(n,k)=local(e_q=sum(j=0,n,x^j/prod(i=1,j,(q^i-1)/(q-1)))+x*O(x^n)); n!*polcoeff(polcoeff(exp(e_q-1),n,x)*prod(j=1,n,(q^j-1)/(q-1)),k,q)} \\ Paul D. Hanna, Dec 15 2008
A323099
Number T(n,k) of colored set partitions of [n] where exactly k colors are used for the elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 15, 210, 540, 360, 0, 52, 1560, 7800, 12480, 6240, 0, 203, 12586, 109620, 316680, 365400, 146160, 0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080, 0, 4140, 1051560, 23995440, 169011360, 521640000, 792892800, 584236800, 166924800
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 4;
0, 5, 30, 30;
0, 15, 210, 540, 360;
0, 52, 1560, 7800, 12480, 6240;
0, 203, 12586, 109620, 316680, 365400, 146160;
0, 877, 110502, 1583862, 7366800, 14733600, 13260240, 4420080;
...
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-j, k)*binomial(n-1, j-1)*k^j, j=1..n))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
# second Maple program:
T:= (n, k)-> combinat[bell](n)*Stirling2(n,k)*k!:
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k] Binomial[n-1, j-1] k^j, {j, 1, n}]];
T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten
(* second program: *)
T[n_, k_] := BellB[n] StirlingS2[n, k] k!;
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A336140
Number of ways to choose a set partition of the parts of a strict integer composition of n.
Original entry on oeis.org
1, 1, 1, 5, 5, 9, 39, 43, 73, 107, 497, 531, 951, 1345, 2125, 8789, 9929, 16953, 24723, 38347, 52717, 219131, 240461, 419715, 600075, 938689, 1278409, 1928453, 6853853, 7815657, 13205247, 19051291, 29325121, 40353995, 60084905, 80722899, 277280079, 312239953
Offset: 0
Set partitions of binary indices are
A050315.
Set partitions of strict partitions are
A294617.
-
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 30 2020
-
Table[Sum[BellB[Length[ctn]],{ctn,Join@@Permutations/@Select[ IntegerPartitions[n],UnsameQ@@#&]}],{n,0,10}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0,
BellB[p]*p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
A274844
The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
- Richard P. Feynman, QED, The strange theory of light and matter, 1985.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
- Wikipedia, Feynman diagram
-
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
-
nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A156788
Triangle T(n, k) = binomial(n, k)*A000166(n-k)*k^n with T(0, 0) = 1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 4, 0, 3, 0, 27, 0, 8, 96, 0, 256, 0, 45, 640, 2430, 0, 3125, 0, 264, 8640, 29160, 61440, 0, 46656, 0, 1855, 118272, 688905, 1146880, 1640625, 0, 823543, 0, 14832, 1899520, 16166304, 41287680, 43750000, 47029248, 0, 16777216, 0, 133497, 34172928, 438143580, 1453326336, 2214843750, 1693052928, 1452729852, 0, 387420489
Offset: 0
Triangle begins as:
1;
0, 1;
0, 0, 4;
0, 3, 0, 27;
0, 8, 96, 0, 256;
0, 45, 640, 2430, 0, 3125;
0, 264, 8640, 29160, 61440, 0, 46656;
0, 1855, 118272, 688905, 1146880, 1640625, 0, 823543;
0, 14832, 1899520, 16166304, 41287680, 43750000, 47029248, 0, 16777216;
- J. Riordan, Combinatorial Identities, Wiley, 1968, p.194.
-
A000166[n_]:= A000166[n]= If[n==0, 1, n*A000166[n-1] + (-1)^n];
T[n_, k_]:= If[n==0, 1, Binomial[n, k]*A000166[n-k]*k^n];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 10 2021 *)
-
def A000166(n): return 1 if (n==0) else n*A000166(n-1) + (-1)^n
def A156788(n,k): return 1 if (n==0) else binomial(n,k)*k^n*A000166(n-k)
flatten([[A156788(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
A156789
Irregular triangle, read by rows, T(n, k) = binomial(2*n, k)*binomial(2*k, k).
Original entry on oeis.org
1, 1, 4, 6, 1, 8, 36, 80, 70, 1, 12, 90, 400, 1050, 1512, 924, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 20, 270, 2400, 14700, 63504, 194040, 411840, 579150, 486200, 184756, 1, 24, 396, 4400, 34650, 199584, 853776, 2718144, 6370650, 10696400, 12193896, 8465184, 2704156
Offset: 0
Triangle begins as:
1;
1, 4, 6;
1, 8, 36, 80, 70;
1, 12, 90, 400, 1050, 1512, 924;
1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870;
1, 20, 270, 2400, 14700, 63504, 194040, 411840, 579150, 486200, 184756;
- J. Riordan, Combinatorial Identities, Wiley, 1968, p.77.
-
Flat(List([0..10], n-> List([0..2*n], k->Binomial(2*n, k)*Binomial(2*k, k) ))); # G. C. Greubel, Nov 30 2019
-
[Binomial(2*n, k)*Binomial(2*k, k): k in [0..2*n], n in [0..10]]; // G. C. Greubel, Nov 30 2019
-
seq(seq( binomial(2*n, k)*binomial(2*k, k), k=0..2*n), n=0..10); # G. C. Greubel, Nov 30 2019
-
Table[Binomial[2*n, k]*Binomial[2*k, k], {n,0,10}, {k,0,2*n}]//Flatten
-
T(n,k) = binomial(2*n, k)*binomial(2*k, k); \\ G. C. Greubel, Nov 30 2019
-
[[binomial(2*n, k)*binomial(2*k, k) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Nov 30 2019
A307362
Expansion of e.g.f. Sum_{j>=0} (exp(x) - 1)^j / Product_{k=1..j} (1 - k*(exp(x) - 1)).
Original entry on oeis.org
1, 1, 5, 43, 569, 10651, 265985, 8498323, 336759449, 16158195691, 920970111665, 61390084384003, 4724023128773129, 415070770350493531, 41252331696522595745, 4599993183150111332083, 571422442346267636255609, 78581827113539181495412171, 11896744343184751608550862225
Offset: 0
-
nmax = 18; CoefficientList[Series[Sum[(Exp[x] - 1)^j/Product[(1 - k (Exp[x] - 1)), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 18; CoefficientList[Series[Sum[j! BellB[j] x^j/Product[(1 - k x), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x]
Table[Sum[StirlingS2[n, k] k! BellB[k], {k, 0, n}], {n, 0, 18}]
A307363
Expansion of e.g.f. Sum_{j>=0} log(1 + x)^j / Product_{k=1..j} (1 - k*log(1 + x)).
Original entry on oeis.org
1, 1, 3, 20, 218, 3514, 77386, 2220504, 80085792, 3533917704, 186779329704, 11623513158960, 839754709300800, 69603737430736560, 6552428441847854640, 694531396130434062720, 82265733994694038784640, 10816812417663289139328000, 1569560370536552329095091200
Offset: 0
-
nmax = 18; CoefficientList[Series[Sum[Log[1 + x]^j/Product[(1 - k Log[1 + x]), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! BellB[k], {k, 0, n}], {n, 0, 18}]
Showing 1-10 of 12 results.
Comments