cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A010815 From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

When convolved with the partition numbers A000041 gives 1, 0, 0, 0, 0, ...
Also, number of different partitions of n into parts of -1 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
The comment that "when convolved with the partition numbers gives [1, 0, 0, 0, ...]" is equivalent to row sums of triangle A145975 = [1, 0, 0, 0, ...]; where A145975 is a partition number convolution triangle. - Gary W. Adamson, Oct 25 2008
When convolved with n-th partial sums of A000041 = the binomial sequence starting (1, n, ...). Example: A010815 convolved with A014160 (partial sum operation applied thrice to the partition numbers) = (1, 3, 6, 10, ...). - Gary W. Adamson, Nov 11 2008
(A000012^(-n) * A000041) convolved with A010815 = n-th row of the inverse of Pascal's triangle, (as a vector, followed by zeros); where A000012^(-1) = the pairwise difference operator. Example: (A000012^(-4) * A000041) convolved with A010815 = (1, -4, 6, -4, 1, 0, 0, 0, ...). - Gary W. Adamson, Nov 11 2008
Also sum of [product of (1-2/(hook lengths)^2)] over all partitions of n. - Wouter Meeussen, Sep 16 2010
Cayley (1895) begins article 387 with "Write for shortness sqrt(2k'K / pi) / [1-q^{2m-1}]^2 = G, ..." which is a convoluted way of writing G = [1-q^{2m}] = (1-q^2)(1-q^4)... - Michael Somos, Aug 01 2011
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = x. - Michael Somos, Jan 21 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 1 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...
G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...
From _Seiichi Manyama_, Mar 04 2017: (Start)
G.f.
= 1 + (-x - 3*x^2/2 - 4*x^3/3 -  7*x^4/4  -  6*x^5/5 - ...)
     + 1/2 * (x^2   + 3*x^3   + 59*x^4/12 + 15*x^5/2 + ...)
              + 1/6 * (-x^3   -  9*x^4/2  - 43*x^5/4 - ...)
                         + 1/24 * (x^4    +  6*x^5   + ...)
                                   + 1/120 * (-x^5   - ...)
                                             + ...
= 1 - x - x^2 + x^5 + .... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010815List(len) = DedekindEta(len, 1)
    A010815List(93) |> println # Peter Luschny, Mar 09 2018
    
  • Julia
    function A010815(n)
        r = 24 * n + 1
        m = isqrt(r)
        m * m != r && return 0
        iseven(div(m + m % 6, 6)) ? 1 : -1
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 15 2017
    
  • Maple
    A010815 := mul((1-x^m), m=1..100);
    A010815 := proc(n) local x,m;
        product(1-x^m,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);
    (-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # Peter Luschny, Oct 02 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]
    (* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* Wouter Meeussen, Sep 16 2010 *)
    CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* Jean-François Alcover, Dec 04 2013 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 04 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, May 04 2018 *)
    Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* Michael Somos, Jun 05 2002 */
    
  • PARI
    {a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* Michael Somos, Nov 19 2011 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* Michael Somos, Aug 18 2006 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ Altug Alkan, Mar 21 2018
    
  • Python
    from math import isqrt
    def A010815(n):
        m = isqrt(24*n+1)
        return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # Chai Wah Wu, Sep 08 2021
    

Formula

a(n) = (-1)^m if n is of the form m(3m+-1)/2; otherwise a(n)=0. The values of n such that |a(n)|=1 are the generalized pentagonal numbers, A001318. The values of n such that a(n)=0 is A090864.
Expansion of the Dedekind eta function without the q^(1/24) factor in powers of q.
Euler transform of period 1 sequence [ -1, -1, -1, ...].
G.f.: (q; q){oo} = Product{k >= 1} (1-q^k) = Sum_{n=-oo..oo} (-1)^n*q^(n*(3n+1)/2). The first notation is a q-Pochhammer symbol.
Expansion of f(-x) := f(-x, -x^2) in powers of x. A special case of Ramanujan's general theta function; see Berndt reference. - Michael Somos, Apr 08 2003
a(n) = A067661(n) - A067659(n). - Jon Perry, Jun 17 2003
Expansion of f(x^5, x^7) - x * f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 21 2012
G.f.: q^(-1/24) * eta(t), where q = exp(2 Pi i t) and eta is the Dedekind eta function.
G.f.: 1 - x - x^2(1-x) - x^3(1-x)(1-x^2) - ... - Jon Perry, Aug 07 2004
Given g.f. A(x), then B(q) = q * A(q^3)^8 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 + 16*u*w^2. - Michael Somos, May 02 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(x^q), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^9*u3*u6^3 - u2^9*u3^4 + 9*u1^4*u2*u6^8. - Michael Somos, May 02 2005
a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 5 or 7 (mod 12), b(p^2e) = +1 if p == 1 or 11 (mod 12) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0. - Michael Somos, May 08 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^16*w^8 - v^24 + 16*u^8*w^16. - Michael Somos, May 08 2005
a(n) = (-1)^n * A121373(n). a(25*n + 1) = -a(n). a(5*n + 3) = a(5*n + 4) = 0. a(5*n) = A113681(n). a(5*n + 2) = - A116915(n). - Michael Somos, Feb 26 2006
G.f.: 1 + Sum_{k>0} (-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Aug 18 2006
a(n) = -(1/n)*Sum_{k=1..n} sigma(k)*a(n-k). - Vladeta Jovovic, Aug 28 2002
G.f.: A(x) = 1 - x/G(0); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2012
Expansion of f(-x^2) * chi(-x) = psi(-x) * chi(-x^2) = psi(x) * chi(-x)^2 = f(-x^2)^2 / psi(x) = phi(-x) / chi(-x) = phi(-x^2) / chi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 16 2015
G.f.: exp( Sum_{n>=1} -sigma(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
G.f.: Sum_{n >= 0} x^(n*(2*n-1))*(2*x^(2*n) - 1)/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 02 2021
The g.f. A(x) satisfies A(x^2) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k >= n+1} 1 - x^k = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + + - - .... - Peter Bala, Feb 12 2021
For m >= 0, A(x) = (1 - x)*(1 - x^2)*...*(1 - x^m) * Sum_{n >= 0} (-1)^n * x^(n*(n+2*m+1)/2) /(Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
From Friedjof Tellkamp, Mar 19 2025: (Start)
Sum_{n>=1} a(n)/n = 6 - 4*Pi/sqrt(3).
Sum_{n>=1} a(n)/n^2 = -108 + 16*sqrt(3)*Pi + 2*Pi^2.
Sum_{n>=1} a(n)/n^k = Sum_{i=0..k} 6^(k-i)*C(-k, k-i)*A(i), where A(i)=(2^i-2)*(3^i-3)*zeta(i) for even i, and A(i)=-G(i/2-1/2)*(2^i+2)*(2*Pi)^i/(sqrt(3)*Gamma(i+1)) for odd i, with G(n>0) as the Glaisher's numbers (A002111) and G(0)=1/2. (End)

Extensions

Additional comments from Michael Somos, Jun 05 2002

A026838 Number of partitions of n into distinct parts, the greatest being even.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859
Offset: 1

Views

Author

Keywords

Comments

Fine's theorem: a(n) - A026837(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an even number of parts and such that parts of every size from 1 to the largest occur. Example: a(8)=3 because we have [3,2,2,1], [2,2,1,1,1,1] and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006

Examples

			a(8)=3 because we have [8],[6,2] and [4,3,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(2*k)*product(1+x^j,j=1..2*k-1),k=1..50): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 04 2006
  • Mathematica
    nn=54;CoefficientList[Series[Sum[x^(2j)Product[1+ x^i,{i,1,2j-1}],{j,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)

Formula

G.f.: sum(k>=1, x^(2k) * prod(j=1..2k-1, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118301(2*n), a(2*n-1) = A118302(2*n-1); a(n) = A000009(n) - A026837(n). - Reinhard Zumkeller, Apr 22 2006

A143064 Expansion of a Ramanujan false theta series variation of A089801 in powers of x.

Original entry on oeis.org

1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Examples

			G.f. = 1 + x - x^5 - x^8 + x^16 + x^21 - x^33 - x^40 + x^56 + x^65 - x^85 - x^96 + ...
G.f. = q + q^4 - q^16 - q^25 + q^49 + q^64 - q^100 - q^121 + q^169 + q^196 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 13th equation.

Crossrefs

Column m=0 of A185646.

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[3 n + 1]}, If[ IntegerQ @ m, (-1)^Quotient[ m, 3], 0]]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, n}], {x, 0, n}]; (* Michael Somos, Nov 04 2013 *)
    a[ n_] := SeriesCoefficient[ Sum[ x^k QPochhammer[ x, x^2, k], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ Sum[ x^k / QPochhammer[ -x, x^2, k + 1], {k, 0, 2 n}], {x, 0, 2 n}]; (* Michael Somos, Jun 30 2015 *)
  • PARI
    {a(n) = my(m); if( issquare( 3*n + 1, &m), (-1)^(m \ 3) )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( e%2, 0, p==2, -(-1)^(e/2), p == 3, 0, p%6 == 1, 1, (-1)^(e/2))))}; /* Michael Somos, Jul 19 2013 */
    
  • PARI
    /* Continued Fraction: */
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 18 2013

Formula

Expansion of Sum_{k>=0} x^k / (Product_{j=0..k} ( 1 + x^(2*k + 1) ) ) in powers of x^2. - Michael Somos, Nov 04 2013
a(n) = b(3*n + 1) where b() is multiplicative with b(p^(2*e)) = -(-1)^e if p = 2, b(p^(2*e)) = (-1)^e if p = 5 (mod 6), b(p^(2*e)) = 1 if p = 1 (mod 6), and b(p^(2*e-1)) = b(3^e) = 0 if e>0. - Michael Somos, Jul 19 2013
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0.
a(8*n) = A143062(n). Convolution of A010054 with A143065. - Michael Somos, Jul 19 2013
G.f.: Sum_{k>=0} (-1)^k * x^(3*k^2 + 2*k) * ( 1 + x^(2*k + 1) ).
G.f.: 1/(1 - x*(1-x)/(1 - x^2*(1-x^2)/(1 - x^3*(1-x^3)/(1 - x^4*(1-x^4)/(1 - ...))))), a continued fraction. - Paul D. Hanna, Jul 18 2013
abs(a(n)) = A089801(n). - Michael Somos, Jun 30 2015
G.f.: 1 + x*(1-x) + x^2*(1-x)*(1-x^3) + x^3*(1-x)*(1-x^3)*(1-x^5) + ... . - Michael Somos, Aug 03 2017

A026837 Number of partitions of n into distinct parts, the greatest being odd.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 19, 23, 27, 32, 38, 45, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 556, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2049, 2291, 2560, 2859
Offset: 1

Views

Author

Keywords

Comments

Fine's theorem: A026838(n) - a(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an odd number of parts and such that parts of every size from 1 to the largest occur. Example: a(9)=4 because we have [3,2,2,1,1],[2,2,2,2,1],[2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006

Examples

			a(9)=4 because we have [9],[7,2],[5,4] and [5,3,1].
		

Crossrefs

Cf. A026838.
Cf. A027193.

Programs

Formula

G.f.: sum(k>=1, x^(2k-1) * prod(j=1..2k-2, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118302(2*n), a(2*n-1) = A118301(2*n-1); a(n) = A000009(n) - A026838(n). - Reinhard Zumkeller, Apr 22 2006

A203568 a(n) = A026837(n) - A026838(n).

Original entry on oeis.org

0, 1, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 03 2012

Keywords

Examples

			G.f. = x - x^2 + x^5 - x^7 + x^12 - x^15 + x^22 - x^26 + x^35 - x^40 + x^51 - ...
G.f. = q^25 - q^49 + q^121 - q^169 + q^289 - q^361 + q^529 - q^625 + ..
From _Peter Bala_, Feb 13 2020: (Start)
G.f.s for the tails of A(x):
Sum_{n >= 1} (-1)^(n+1) * x^(2*n+3)*Product_{k = 2..n} 1 + x^k = x^5 - x^7 + x^12 - x^15 + x^22 - ....
Sum_{n >= 2} (-1)^n * x^(3*n+6)*Product_{k = 3..n} 1 + x^k = x^12 - x^15 + x^22 - x^26 + x^35 - ....
Sum_{n >= 3} (-1)^(n+1) * x^(4*n+10)*Product_{k = 4..n} 1 + x^k =
x^22 - x^26 + x^35 - x^40 + x^51 - .... (End)
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(0) to a(N)
    V:= Array(0..N):
    for k from 1 to floor((sqrt(1+24*N)-1)/6) do V[(3*k^2-k)/2]:= 1 od:
    for k from 1 to floor((sqrt(1+24*N)+1)/6) do V[(3*k^2+k)/2]:= -1 od:
    convert(V,list); # Robert Israel, Nov 24 2015
  • Mathematica
    a[ n_] := Which[ n < 1, 0, SquaresR[ 1, 24 n + 1] == 2, -(-1)^Quotient[ Sqrt[24 n + 1], 3], True, 0]; (* Michael Somos, Jul 12 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( issquare( 24*n + 1, &n), - kronecker( -12, n)))};

Formula

G.f.: Sum_{k in Z} sign(k) * x^(k * (3*k - 1) / 2).
G.f.: Sum_{k>0} x^(k * (3*k - 1) / 2) * (1 - x^k). - Michael Somos, Jul 12 2015
G.f.: x - x^2 * (1 + x) + x^3 * (1 + x) * (1 + x^2) - x^4 * (1 + x) * (1 + x^2) * (1 + x^3) + .... - Michael Somos, Jul 12 2015
G.f.: x / (1 + x) - x^3 / ((1 + x) * (1 + x^2)) + x^6 / ((1 + x) * (1 + x^2) * (1 + x^3)) - .... - Michael Somos, Jul 12 2015
G.f.: x / (1 + x^2) - x^2 / ((1 + x^2) * (1 + x^4)) + x^3 / ((1 + x^2 ) * (1 + x^4) * (1 + x^6)) - .... - Michael Somos, Jul 12 2015
a(n) = - A143062(n) unless n=0. - Michael Somos, Jul 12 2015
For k >= 1, a((3*k^2 - k)/2) = 1, a((3*k^2 + k)/2) = -1. a(n) = 0 otherwise. - Robert Israel, Nov 24 2015
From Peter Bala, Feb 11 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n*(2*n-1))/Product_{k = 1..2*n} 1 + x^k = x - x^2 + x^5 - x^7 + x^12 - x^15 + - ..., follows by adding terms in pairs in the above g.f. Sum_{n >= 1} (-1)^(n+1)*x^(n*(n+1)/2)/Product_{k = 1..n} 1 + x^k of Somos, dated Jul 12 2015.
G.f.: A(x) = 1/2 + (1/2)*Sum_{n >= 1} (-1)^n*x^(n*(n-1)/2)/Product_{k = 1..n} 1 + x^k.
A(x) = Sum_{n >= 0} (-1)^n * x^(n+1)*Product_{k = 1..n} 1 + x^k. (Set x = -1 in Andrews, equation 8. For similar results see the Examples below.)
Conjectural g.f: A(x) = Sum_{n >= 1} (-1)^(n+1) * x^(2*n-1)/Product_{k = 1..n} 1 + x^(2*k-1) = x - x^2 + x^5 - x^7 + x^12 - x^15 + - ....
More generally, for positive integer N, we appear to have the identity
A(x) = Product_{j = 1..N-1} 1/(1 + x^(2*j)) * ( P(N,x) + Sum_{n >= 1} (-1)^(n+N) * x^(2*N*n-N)/Product_{k = 1..n} 1 + x^(2*k-1) ), where P(N,x) is a polynomial in x of degree N^2 - N - 1 for N > 1, with the first few values given empirically by P(1,x) = 0, P(2,x) = x, P(3,x) = x - x^2 + x^5 and P(4,x) = x - x^2 + x^3 + x^5 + x^7 - x^8 + x^11. Cf. A186424. (End)

A199918 Expansion of false theta series variation of Euler's pentagonal number series in powers of x.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 12 2011

Keywords

Examples

			G.f. = 1 + x + x^2 + x^5 - x^7 - x^12 - x^15 - x^22 + x^26 + x^35 + x^40 + ...
G.f. = q + q^25 + q^49 + q^121 - q^169 - q^289 - q^361 - q^529 + q^625 + q^841 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ SquaresR[ 1, 24 n + 1] == 2, KroneckerSymbol[ -6, Sqrt[ 24 n + 1]], 0];
  • PARI
    {a(n) = my(m); if( issquare( 24*n + 1, &m), kronecker( -6, m), 0)};

Formula

a(n) = b(24*n + 1) where b(n) is multiplicative with b(p^(2*e)) = (-1)^e if p == 13, 17, 29, 23 (mod 24), b(p^(2*e)) = +1 if p = 1, 5, 7, 11 (mod 24) and b(p^(2*e - 1)) = b(2^e) = b(3^e) = 0 if e > 0.
G.f.: 1 + Sum_{k>0} x^k / Product_{i=1..k} (1 + x^(2*i)) = 1 + Sum_{k>0} x^k * Product_{i=1..k-1} (1 + (-x)^i) = Sum_{k in Z} x^((k^2 - 1) / 24) * Kronecker(-24, k).
|a(n)| = |A010815(n)| = |A143062(n)|.
G.f.: A(x) = 1/(1 - x) * (2 - Sum_{k >= 0} x^(3*k)/Product_{i = 1..k} 1 + x^(2*i)) = 1/((1 - x)*(1 - x^3)) * (-2*x^3 + Sum_{k >= 0} x^(5*k)/Product_{i = 1..k} 1 + x^(2*i)). - Peter Bala, Jan 24 2025

A143063 Expansion of the product of a false theta function and a Ramanujan theta function in powers of x.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 2, 4, 4, 2, 4, 6, 4, 4, 4, 8, 8, 6, 8, 12, 10, 10, 12, 16, 16, 14, 18, 22, 22, 20, 24, 30, 32, 30, 36, 42, 42, 42, 48, 56, 60, 58, 66, 76, 78, 80, 88, 102, 106, 108, 120, 134, 140, 144, 158, 178, 186, 192, 210, 232, 242, 252, 272, 300
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^3 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^14 + 4*x^15 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 235, Entry 9.4.8
  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 14th equation.

Crossrefs

Programs

  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 24*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / eta(x + A) * eta(x^2 + A)^2 / eta(x^4 + A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, sqrtint(n+1) - 1, x^(k^2 + 2*k) / (1 - x^(4*k)) / prod(j=1, k-1, 1 - x^(2*j), 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};

Formula

G.f.: (1 - x + x^2 - x^5 + x^7 - x^12 + x^15 - ...) * (1 + x) * (1 + x^3) * (1 + x^5) * (1 + x^7) * ... [Ramanujan]
G.f.: 1 + 2 * x^3 / (1 - x^4) + 2 * x^8 / ((1 - x^2) * (1 - x^8)) + 2 * x^15 / ((1 - x^2) * (1 - x^4) * (1 - x^12)) + 2 * x^24 / ((1 - x^2) * (1 - x^4) * (1 - x^6) * (1 - x^16)) + ... [Ramanujan]
a(n) = 2 * A027348(n) unless n=0. Convolution of A143062 and A000700.
Showing 1-7 of 7 results.