A073157
Number of Schroeder n-paths containing no FFs.
Original entry on oeis.org
1, 2, 5, 18, 70, 293, 1283, 5808, 26960, 127628, 613814, 2990681, 14730713, 73229291, 366936231, 1851352820, 9397497758, 47957377934, 245903408244, 1266266092112, 6545667052320, 33954266444498, 176689391245146
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 18*x^3 + 70*x^4 + 293*x^5 + 1283*x^6 + ...
Leftmost column of triangle
A073154 (was previous name).
-
List([0..25],n->Sum([0..n],i->Binomial(2*i+1,i)*Binomial(2*i+1,n-i)/(2*i+1))); # Muniru A Asiru, Oct 11 2018
-
a:=n->add(binomial(2*i+1,i)*binomial(2*i+1,n-i)/(2*i+1),i=0..n): seq(a(n),n=0..25); # Muniru A Asiru, Oct 11 2018
-
Table[Sum[Binomial[2*i + 1, i]*Binomial[2*i + 1, n - i]/(2*i + 1), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 11 2018 *)
-
a(n):=sum((sum((binomial(2*k+2,j-k)*binomial(2*k,k)/(k+1)),k,0,j))*(-1)^(n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1); for(i=0,n-1,A=(1+x)*(1+x*(A+x*O(x^n))^2));polcoeff(A,n)} /* Paul D. Hanna, Mar 03 2008 */
A384747
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 6, 0, 1, 11, 15, 16, 0, 1, 26, 39, 43, 44, 0, 1, 63, 110, 123, 127, 128, 0, 1, 153, 308, 358, 371, 375, 376, 0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114, 0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346, 0, 1, 2317, 7238, 9283, 9904, 10084, 10134, 10147, 10151, 10152
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9
n=0 [1]
n=1 [0, 1]
n=2 [0, 1, 2]
n=3 [0, 1, 5, 6]
n=4 [0, 1, 11, 15, 16]
n=5 [0, 1, 26, 39, 43, 44]
n=6 [0, 1, 63, 110, 123, 127, 128]
n=7 [0, 1, 153, 308, 358, 371, 375, 376]
n=8 [0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114]
n=9 [0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346]
...
T(3,3) = 6 counts:
o o o o o __o__
| | | / \ / \ / | \
(3) (2) (1) (1) (2) (2) (1) (1) (1) (1)
| |
(1) (2)
-
b(i,j,k,N) = {if(k>N,1, 1/( 1 - sum(u=1,j, if(u==i,0,x^u * b(u,j,k+1,N-u+1)))))}
Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,k, b(i,k,1,N)*x^i)))}
T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Gx(k,N)~])); vector(N, n, vector(n, k, v[n, k]))}
T(9)
A171199
G.f. satisfies: A(x) = exp( Sum_{n>=1} [A(x)^n + A(x)^-n]*x^n/n ).
Original entry on oeis.org
1, 2, 3, 8, 25, 83, 289, 1041, 3847, 14504, 55569, 215727, 846761, 3354858, 13398965, 53888063, 218053915, 887107888, 3626373205, 14887942624, 61358959587, 253771944529, 1052917272543, 4381374717994, 18280470530047
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 8*x^3 + 25*x^4 + 83*x^5 + 289*x^6 +...
log(A(x)) = [A(x)+1/A(x)]*x + [A(x)^2+1/A(x)^2]*x^2/2 + [A(x)^3+1/A(x)^3]*x^3/3 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,(A^m+A^-m+x*O(x^n))*x^m/m)));polcoeff(A,n)}
-
{a(n)=polcoeff((1+x^2-sqrt((1-x^2)^2-4*x+x^2*O(x^n)))/(2*x), n)}
A384685
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 5, 8, 9, 0, 14, 25, 28, 29, 0, 42, 83, 95, 98, 99, 0, 132, 289, 337, 349, 352, 353, 0, 429, 1041, 1236, 1285, 1297, 1300, 1301, 0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919, 0, 4862, 14504, 17865, 18709, 18912, 18961, 18973, 18976, 18977
Offset: 0
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=0 [1]
n=1 [0, 1]
n=2 [0, 2, 3]
n=3 [0, 5, 8, 9]
n=4 [0, 14, 25, 28, 29]
n=5 [0, 42, 83, 95, 98, 99]
n=6 [0, 132, 289, 337, 349, 352, 353]
n=7 [0, 429, 1041, 1236, 1285, 1297, 1300, 1301]
n=8 [0, 1430, 3847, 4652, 4854, 4903, 4915, 4918, 4919]
...
T(2,2) = 3 counts:
o o o
| | / \
(2) (1) (1) (1)
|
(1)
-
b(k) = {(x^2-x^(k+1))/(1-x)}
P(N,k) = {my(x='x+O('x^N)); Vec((1-b(k)-sqrt((b(k)-1)^2-4*x))/(2*x))}
T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1,1,0))~); for(k=1,N, v=matconcat([v,P(N+1,k)~])); vector(N,n, vector(n,k,v[n,k]))}
A384748
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are greater than 0, and no nodes have the same weight as their parent node.
Original entry on oeis.org
1, 1, 2, 6, 16, 44, 128, 376, 1114, 3346, 10152, 31028, 95474, 295532, 919446, 2873388, 9015812, 28390466, 89689586, 284173096, 902780060, 2875016084, 9176388532, 29349499212, 94050228650, 301918397716, 970815092346
Offset: 0
a(3) = 6 counts:
o o o o o __o__
| | | / \ / \ / | \
(3) (2) (1) (1) (2) (2) (1) (1) (1) (1)
| |
(1) (2)
-
b(i,j,k,N) = {if(k>N,1, 1/(1-sum(u=1,j, if(u==i,0,x^u*b(u,j,k+1,N-u+1)))))}
Dx(N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,N, b(i,N,1,N)*x^i)))}
Dx(10)
A307733
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-1} a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 4, 14, 54, 220, 934, 4090, 18344, 83850, 389214, 1829736, 8693962, 41685714, 201442188, 980091814, 4797070022, 23603701828, 116688837886, 579312087802, 2887020896016, 14437318756818, 72424982972862, 364366674463824, 1837954750285458
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
nmax = 24; CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 2 x^3 + x^4])/(2 x), {x, 0, nmax}], x]
A364477
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^7.
Original entry on oeis.org
1, 1, 3, 14, 76, 448, 2791, 18078, 120516, 821435, 5698422, 40101623, 285583775, 2054272430, 14903954415, 108932920861, 801350333186, 5928653489398, 44084056075057, 329279673851792, 2469493161891742, 18588339309502760, 140383789476473354
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*n+3*k, k)*binomial(2*n+2*k, n-2*k)/(n+4*k+1));
A364473
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^6.
Original entry on oeis.org
1, 1, 3, 13, 65, 353, 2024, 12057, 73890, 462851, 2950261, 19073921, 124776881, 824409052, 5493384031, 36874564529, 249114808794, 1692489908494, 11556616157589, 79265016880139, 545860966841247, 3772800724433931, 26162662010039826, 181974370638420829
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*n+2*k, k)*binomial(2*n+k, n-2*k)/(n+3*k+1));
A382096
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,2,3}, and no nodes have the same weight as their parent node.
Original entry on oeis.org
1, 1, 2, 6, 15, 39, 110, 308, 869, 2499, 7238, 21086, 61871, 182523, 540830, 1609238, 4805871, 14398559, 43264896, 130347450, 393650751, 1191441349, 3613345360, 10978726634, 33414836743, 101863289331, 310984519412, 950734751040, 2910319385881, 8919643999157, 27368321239074
Offset: 0
a(3) = 6 counts:
o o o o o __o__
| | | / \ / \ / | \
(3) (2) (1) (1) (2) (2) (1) (1) (1) (1)
| |
(1) (2)
-
b(i,j,k,N) = {if(k>N,1, 1/(1-sum(u=1,j, if(u==i,0,x^u*b(u,j,k+1,N-u+1)))))}
Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1-sum(i=1,k, b(i,k,1,N)*x^i)))}
Gx(3,20)
Showing 1-9 of 9 results.
Comments