cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A029651 Central elements of the (1,2)-Pascal triangle A029635.

Original entry on oeis.org

1, 3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (2n+1)-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007

References

  • V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.

Crossrefs

Essentially a duplicate of A003409.

Programs

  • Maple
    a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n))-0^n/2;
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Dec 16 2015
  • Mathematica
    Join[{1},Table[3*Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    concat([1], for(n=1, 50, print1(3*binomial(2*n-1,n), ", "))) \\ G. C. Greubel, Jan 23 2017

Formula

a(n) = 3 * binomial(2n-1, n) (n>0). - Len Smiley, Nov 03 2001
a(n) = 3*A001700(n-1), (n>=1).
G.f.: (1+xC(x))/(1-2xC(x)), C(x) the g.f. of A000108. - Paul Barry, Dec 17 2004
a(n) = A003409(n), n>0. - R. J. Mathar, Oct 23 2008
a(n) = Sum_{k=0..n} A039599(n,k)*A000034(k). - Philippe Deléham, Oct 29 2008
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n))-0^n/2. - Peter Luschny, Dec 16 2015
a(n) ~ (3/2)*4^n*(1-(1/8)/n+(1/128)/n^2+(5/1024)/n^3-(21/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = 2^(1-n)*Sum_{k=0..n} binomial(k+n,k)*binomial(2*n-1,n-k), n>0, a(0)=1. - Vladimir Kruchinin, Nov 23 2016
E.g.f.: (3*exp(2*x)*BesselI(0,2*x) - 1)/2. - Ilya Gutkovskiy, Nov 23 2016
a(n) = A143398(2n,n) = A145460(2n,n). - Alois P. Heinz, Sep 09 2018
a(n) = [x^n] C(-x)^(-3*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Oct 16 2024

Extensions

More terms from David W. Wilson

A143398 Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains k labels, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 10, 3, 1, 0, 41, 9, 4, 1, 0, 196, 40, 10, 5, 1, 0, 1057, 210, 30, 15, 6, 1, 0, 6322, 1176, 175, 35, 21, 7, 1, 0, 41393, 7273, 1176, 105, 56, 28, 8, 1, 0, 293608, 49932, 7084, 756, 126, 84, 36, 9, 1, 0, 2237921, 372060, 42120, 6510, 378, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(4,2) = 9: 3->{1,2}<-4, 2->{1,3}<-4, 2->{1,4}<-3, 1->{2,3}<-4, 1->{2,4}<-3, 1->{3,4}<-2, {1,2}{3,4}, {1,3}{2,4}, {1,4}{2,3}.
Triangle begins:
  1;
  0,   1;
  0,   3,  1;
  0,  10,  3,  1;
  0,  41,  9,  4,  1;
  0, 196, 40, 10,  5,  1;
  ...
		

Crossrefs

Main diagonal gives A000012.
Row sums give A143406.
T(2n,n) gives A029651.

Programs

  • Maple
    u:= (n, k)-> `if`(k=0, 0, floor(n/k)):
    T:= (n, k)-> n! *add(i^(n-k*i)/ ((n-k*i)! *i! *k!^i), i=0..u(n, k)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    t[n_, n_] = 1; t[, 0] = 0; t[n, k_] := n!*Sum[i^(n-k*i)/((n-k*i)!*i!*k!^i), {i, 0, n/k}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
  • PARI
    u(n,k) = if(k==0, 0, n\k);
    T(n, k) = n!*sum(j=0, u(n, k), j^(n-k*j)/(k!^j*j!*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(n,k) = n! * Sum_{i=0..u(n,k)} i^(n-k*i)/((n-k*i)!*i!*k!^i) with u(n,k) = 0 if k=0 and u(n,k) = floor(n/k) else.

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A279636 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Examples

			Square array A(n,k) begins:
:   1,    1,    1,     1,      1,       1,        1, ...
:   1,    1,    1,     1,      1,       1,        1, ...
:   2,    3,    5,     9,     17,      33,       65, ...
:   5,   10,   22,    52,    130,     340,      922, ...
:  15,   41,  125,   413,   1445,    5261,    19685, ...
:  52,  196,  836,  3916,  19676,  104116,   572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
		

Crossrefs

Rows n=0+1,2 give: A000012, A000051.
Main diagonal gives A279644.
Cf. A145460.

Programs

  • Maple
    egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
    A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).

A145453 Exponential transform of binomial(n,3) = A000292(n-2).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 3 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 3 labels.

Crossrefs

3rd column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *binomial(j,3) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f.: exp(exp(x)*x^3/3!).

A292948 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = (-1)^(k+1) * Sum_{i=0..n-1} (-1)^i * binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, -1, 1, 1, 2, 1, 0, -1, -5, 1, 0, 1, -2, 15, 1, 0, 0, -3, 9, -52, 1, 0, 0, 1, 9, -4, 203, 1, 0, 0, 0, -4, -40, -95, -877, 1, 0, 0, 0, 1, 10, 210, 414, 4140, 1, 0, 0, 0, 0, -5, -10, -1176, 49, -21147, 1, 0, 0, 0, 0, 1, 15, -105, 7273, -10088, 115975, 1, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Examples

			Square array begins:
    1,  1,  1,  1, 1, ...
   -1,  1,  0,  0, 0, ...
    2, -1,  1,  0, 0, ...
   -5, -2, -3,  1, 0, ...
   15,  9,  9, -4, 1, ...
		

Crossrefs

Columns k=0-5 give: A292935, A003725, A292909, A292910, A292912, A292950.
Rows n=0 gives A000012.
Main diagonal gives A000012.
Cf. A145460.

Programs

  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (-1) ** (k % 2 + 1) * (0..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A292948(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A292948(20)

A133189 Number of simple directed graphs on n labeled nodes consisting only of some cycle graphs C_2 and nodes not part of a cycle having directed edges to both nodes in exactly one cycle.

Original entry on oeis.org

1, 0, 1, 3, 9, 40, 210, 1176, 7273, 49932, 372060, 2971540, 25359411, 230364498, 2215550428, 22460391240, 239236043985, 2669869110856, 31134833803728, 378485082644400, 4786085290280275, 62838103267148790, 855122923978737876, 12042364529117844328
Offset: 0

Views

Author

Alois P. Heinz, Dec 17 2007

Keywords

Examples

			a(3) = 3, because there are 3 graphs of the given kind for 3 labeled nodes: 3->1<->2<-3,  2->1<->3<-2,  1->2<->3<-1.
		

References

  • A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.

Crossrefs

2nd column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; add(binomial(n, k+k)*
          doublefactorial(k+k-1) *k^(n-k-k), k=0..floor(n/2))
        end:
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *binomial(j, 2) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[Exp[x]x^2/2],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 23 2012 *)
    Table[Sum[BellY[n, k, Binomial[Range[n], 2]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A006882(2*k-1) * k^(n-2*k).
E.g.f.: exp(exp(x)*x^2/2). - Geoffrey Critzer, Nov 23 2012

A145454 Exponential transform of binomial(n,4) = A000332.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 283470, 1667380, 11457446, 99776040, 969295145, 9298091180, 86154691680, 804769174536, 8052676029420, 88489327173660, 1038440150703340, 12501684521410700, 151866259113256611
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 4 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 4 labels.

Crossrefs

4th column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *binomial(j,4) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Binomial[Range[n], 4]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f.: exp(exp(x)*x^4/4!).

A293015 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = - Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, 0, -1, 1, 1, 0, -1, 2, 1, 1, 0, 0, -3, 9, -2, 1, 0, 0, -1, -3, 4, -9, 1, 0, 0, 0, -4, 20, -95, -9, 1, 0, 0, 0, -1, -10, 150, -414, 50, 1, 0, 0, 0, 0, -5, -10, 504, 49, 267, 1, 0, 0, 0, 0, -1, -15, 105, -343, 10088, 413, 1, 0, 0, 0, 0, 0, -6
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2017

Keywords

Examples

			Square array begins:
    1,  1,  1,  1,  1, ...
   -1, -1,  0,  0,  0, ...
    0, -1, -1,  0,  0, ...
    1,  2, -3, -1,  0, ...
    1,  9, -3, -4, -1, ...
		

Crossrefs

Columns k=0-4 give: A000587, A292952, A292953, A292954, A292955.
Rows n=0 gives A000012.
Cf. A145460.

A145455 Exponential transform of C(n,5) = A000389.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 378, 3234, 34056, 289575, 2020018, 12237225, 70634928, 468041756, 4190274648, 45557515620, 499503011496, 5121432107757, 49183015347774, 462331794763069, 4579813478536296, 50959878972009546
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 5 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 5 labels.

Crossrefs

5th column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *binomial(j,5) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x]*x^5/5!], {x, 0, nmax}], x]] (* G. C. Greubel, Nov 21 2017 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(exp(x)*x^5/5!))) \\ G. C. Greubel, Nov 21 2017

Formula

E.g.f.: exp(exp(x)*x^5/5!).
Showing 1-10 of 15 results. Next