cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A152729 a(n) = (n-2)^4 - a(n-1) - a(n-2), with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144
Offset: 1

Views

Author

Keywords

Comments

a(n+2) - a(n-1) = n^4 - (n-1)^4 = A005917(n) for all n in Z. - Michael Somos, Sep 02 2018

Examples

			0 + 0 + 1 = 1^4; 0 + 1 + 15 = 2^4; 1 + 15 + 65 = 3^4; ...
G.f. = x^3 + 15*x^4 + 65*x^5 + 176*x^6 + 384*x^7 + 736*x^8 + 1281*x^9 + ... - _Michael Somos_, Sep 02 2018
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x+1)*(x^2+10*x+1)/((1-x)^5*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^4-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,4!}];lst
    LinearRecurrence[{4,-6,5,-5,6,-4,1}, {0,0,1,15,65,176,384}, 50] (* G. C. Greubel, Sep 01 2018 *)
    a[ n_] := With[ {m = Max[n, 2 - n]}, SeriesCoefficient[ x^3 (1 + x) (1 + 10 x + x^2) / ((1 - x)^5 (1 + x + x^2)), {x , 0, m}]]; (* Michael Somos, Sep 02 2018 *)
  • PARI
    concat([0,0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
    
  • PARI
    {a(n) = my(m = max(n, 2 - n)); polcoeff( x^3 * (1 + x) * (1 + 10*x + x^2) / ((1 - x)^5 * (1 + x + x^2)) + x * O(x^m), m)}; /* Michael Somos, Sep 02 2018 */
    

Formula

G.f.: -x^3*(x+1)*(x^2+10*x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Oct 28 2014
a(n) = a(2 - n) for all n in Z. - Michael Somos, Sep 02 2018

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021

A152730 a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 31, 211, 782, 2132, 4862, 9813, 18093, 31143, 50764, 79144, 118924, 173225, 245675, 340475, 462426, 616956, 810186, 1048957, 1340857, 1694287, 2118488, 2623568, 3220568, 3921489, 4739319, 5688099, 6782950, 8040100, 9476950
Offset: 1

Views

Author

Keywords

Examples

			0 + 0 + 1 = 1^5; 0 + 1 + 31 = 2^5; 1 + 31 + 211 = 3^5; ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^5-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    LinearRecurrence[{5,-10,11,-10,11,-10,5,-1}, {0,0,1,31,211,782,2132, 4862}, 50] (* G. C. Greubel, Sep 01 2018 *)
    CoefficientList[Series[x^2*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x - 1)^6*(x^2 + x + 1)),{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    concat([0,0], Vec(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
    

Formula

G.f.: x^3*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x-1)^6*(x^2 + x + 1)). - Colin Barker, Oct 28 2014

A152731 a(n) + a(n+1) + a(n+2) = n^6, a(1)=a(2)=0.

Original entry on oeis.org

0, 0, 1, 63, 665, 3368, 11592, 31696, 74361, 156087, 300993, 542920, 927648, 1515416, 2383745, 3630375, 5376505, 7770336, 10990728, 15251160, 20803993, 27944847, 37017281, 48417776, 62600832, 80084368, 101455425, 127375983
Offset: 1

Views

Author

Keywords

Comments

0 + 0 + 1 = 1^6; 0 + 1 + 63 = 2^6; ...

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(1+x)*(x^4+56*x^3+246*x^2+56*x+1)/((1-x)^7*(1 +x+ x^2)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^6-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    LinearRecurrence[{6, -15, 21, -21, 21, -21, 15, -6, 1}, {0, 0, 1, 63, 665, 3368, 11592, 31696, 74361}, 5000]
    CoefficientList[Series[x^2*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)),{x, 0, 5000}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(x^3*(1+x)*(x^4+56*x^3 +246*x^2 +56*x+1)/((1-x)^7*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
    

Formula

From R. J. Mathar, Dec 12 2008: (Start)
a(n) = -26*n/3 + 20*n^3/3 - 5*n^2 + 7/3 - 2*n^5 + n^6/3 + 5*n^4/3 - 7*A131713(n)/3.
G.f.: x^3*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)). (End)

A152732 a(n) + a(n+1) + a(n+2) = 2^n.

Original entry on oeis.org

0, 0, 2, 2, 4, 10, 18, 36, 74, 146, 292, 586, 1170, 2340, 4682, 9362, 18724, 37450, 74898, 149796, 299594, 599186, 1198372, 2396746, 4793490, 9586980, 19173962, 38347922, 76695844, 153391690, 306783378, 613566756, 1227133514, 2454267026, 4908534052
Offset: 1

Views

Author

Keywords

Comments

0 + 0 + 2 = 2^1; 0 + 2 + 2 = 2^2; 2 + 2 + 4 = 2^3; 2 + 4 + 10 = 2^4; ...
With a(0)=1, a(n) is the number of length n strings in the language over alphabet {0,1} generated by the regular expression: ((0+1)(0*(11)*)*10)*. - Geoffrey Critzer, Jan 25 2014

Crossrefs

Programs

  • Magma
    I:=[0,0,2]; [n le 3 select I[n] else Self(n-1) +Self(n-2) +2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=2^n-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    LinearRecurrence[{1, 1, 2}, {0, 0, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
  • PARI
    concat([0,0],Vec(2/(1-2*x)/(1+x+x^2)+O(x^99))) \\ Charles R Greathouse IV, Feb 24 2012
    

Formula

From R. J. Mathar, Dec 12 2008: (Start)
a(n) = 2*A077947(n-3).
G.f.: 2*x^3/((1-2*x)*(1+x+x^2)). (End)
a(n) = (1/21)*(3*2^n + 18*cos((2*n*Pi)/3) + 2*sqrt(3)*sin((2*n*Pi)/3)). - Zak Seidov, Dec 12 2008

A152733 a(n) + a(n+1) + a(n+2) = 3^n.

Original entry on oeis.org

0, 0, 3, 6, 18, 57, 168, 504, 1515, 4542, 13626, 40881, 122640, 367920, 1103763, 3311286, 9933858, 29801577, 89404728, 268214184, 804642555, 2413927662, 7241782986, 21725348961, 65176046880, 195528140640, 586584421923, 1759753265766, 5279259797298
Offset: 1

Views

Author

Keywords

Examples

			0 + 0 + 3 = 3^1; 0 + 3 + 6 = 3^2; 3 + 6 + 18 = 3^3; ...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 0 else 3^(n-2) -Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 31 2014
    
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=3^n-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    Rest[CoefficientList[Series[3x^3/((1-3x)(1+x+x^2)),{x,0,30}],x]] (* Harvey P. Dale, Aug 31 2014 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(3*x^3/((1-3*x)*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018

Formula

From R. J. Mathar, Dec 12 2008: (Start)
a(n) = 3*A077834(n-3).
G.f.: 3*x^3/((1-3*x)*(1+x+x^2)). (End)
a(n) = (1/13)*(3^n + 12*cos((2*n*Pi)/3) + 2*sqrt(3)*sin((2*n*Pi)/3)), n=1,2,... - Zak Seidov, Dec 12 2008

A361134 a(1) = 1, a(2) = 2; for n >= 3, a(n) = (n-1)^3 - a(n-1) - a(n-2).

Original entry on oeis.org

1, 2, 5, 20, 39, 66, 111, 166, 235, 328, 437, 566, 725, 906, 1113, 1356, 1627, 1930, 2275, 2654, 3071, 3536, 4041, 4590, 5193, 5842, 6541, 7300, 8111, 8978, 9911, 10902, 11955, 13080, 14269, 15526, 16861, 18266, 19745, 21308, 22947, 24666, 26475, 28366, 30343
Offset: 1

Views

Author

Tamas Sandor Nagy, Mar 02 2023

Keywords

Comments

The sum of every three consecutive terms is equal to the cube of the index of the middle one, i.e., a(n-1) + a(n) + a(n+1) = n^3.

Examples

			a(5) = (5-1)^3 - a(4) - a(3) = 4^3 - 20 - 5 = 64 - 20 - 5 = 39.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = (n - 1)^3 - a[n - 1] - a[n - 2]; Array[a, 45] (* Amiram Eldar, Mar 03 2023 *)
  • PARI
    lista(nn) = my(va = vector(nn)); va[1] = 1; va[2] = 2; for (n=3, nn, va[n] = (n-1)^3 - va[n-1] - va[n-2];); va; \\ Michel Marcus, Mar 03 2023

Formula

G.f.: x*(2*x^5 - 7*x^4 + 9*x^3 + 2*x^2 - x + 1)/((x^2 + x + 1)*(x - 1)^4).
a(n) = (A242135(n) - 6*cos(2*n*Pi/3) + 2*sin(2*n*Pi/3)/sqrt(3))/3. - Stefano Spezia, Mar 04 2023
Showing 1-6 of 6 results.