cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A242476 Primes p such that p + 22 is also prime.

Original entry on oeis.org

7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241, 271, 331, 337, 367, 379, 397, 409, 421, 439, 457, 487, 499, 541, 547, 571, 577, 619, 631, 661, 739, 751, 787, 859, 907, 919, 991, 997, 1009, 1039, 1069, 1087, 1129, 1171, 1201, 1237, 1279, 1297
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2014

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500)| IsPrime(p+22)];
  • Mathematica
    Select[Prime[Range[900]], PrimeQ[# + 22] &]

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A231608 Table whose n-th row consists of primes p such that p + 2n is also prime, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 5, 7, 11, 3, 7, 13, 17, 3, 5, 11, 19, 29, 5, 7, 11, 13, 37, 41, 3, 7, 13, 23, 17, 43, 59, 3, 5, 11, 19, 29, 23, 67, 71, 5, 7, 17, 17, 31, 53, 31, 79, 101, 3, 11, 13, 23, 19, 37, 59, 37, 97, 107, 7, 11, 13, 31, 29, 29, 43, 71, 41, 103, 137
Offset: 1

Views

Author

T. D. Noe, Nov 26 2013

Keywords

Examples

			The following sequences are read by antidiagonals
{3, 5, 11, 17, 29, 41, 59, 71, 101, 107,...}
{3, 7, 13, 19, 37, 43, 67, 79, 97, 103,...}
{5, 7, 11, 13, 17, 23, 31, 37, 41, 47,...}
{3, 5, 11, 23, 29, 53, 59, 71, 89, 101,...}
{3, 7, 13, 19, 31, 37, 43, 61, 73, 79,...}
{5, 7, 11, 17, 19, 29, 31, 41, 47, 59,...}
{3, 5, 17, 23, 29, 47, 53, 59, 83, 89,...}
{3, 7, 13, 31, 37, 43, 67, 73, 97, 151,...}
{5, 11, 13, 19, 23, 29, 41, 43, 53, 61,...}
{3, 11, 17, 23, 41, 47, 53, 59, 83, 89,...}
...
		

Crossrefs

Cf. A020483 (numbers in first column).
Cf. A086505 (numbers on the diagonal).

Programs

  • Maple
    A231608 := proc(n,k)
        local j,p ;
        j := 0 ;
        p := 2;
        while j < k do
            if isprime(p+2*n ) then
                j := j+1 ;
            end if;
            if j = k then
                return p;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    for n from 1 to 10 do
        for k from 1 to 10 do
            printf("%3d ",A231608(n,k)) ;
        end do;
        printf("\n") ;
    end do: # R. J. Mathar, Nov 19 2014
  • Mathematica
    nn = 10; t = Table[Select[Range[100*nn], PrimeQ[#] && PrimeQ[# + 2*n] &, nn], {n, nn}]; Table[t[[n-j+1, j]], {n, nn}, {j, n}]

A272816 Prime pairs of the form (p, p+20).

Original entry on oeis.org

3, 23, 11, 31, 17, 37, 23, 43, 41, 61, 47, 67, 53, 73, 59, 79, 83, 103, 89, 109, 107, 127, 131, 151, 137, 157, 173, 193, 179, 199, 191, 211, 251, 271, 257, 277, 263, 283, 293, 313, 311, 331, 317, 337, 347, 367, 353, 373, 359, 379, 389, 409, 401, 421
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2016

Keywords

Comments

p and p+20 are not necessarily consecutive primes: (887, 907) is the first pair of consecutive primes that belongs to the sequence.

Examples

			The prime pairs are (3, 23), (11, 31), (17, 37) etc.
		

Crossrefs

Cf. similar sequences listed in A272815.
Prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), A272815 (k=16), A156328 (k=18), this sequence (k=20), A140447 (k=22).

Programs

  • Magma
    &cat [[p, p+20]: p in PrimesUpTo(1000) | IsPrime(p+20)];
    
  • Mathematica
    Flatten[{#, # + 20}&/@Select[Prime[Range[200]], PrimeQ[# + 20] &]]
  • Python
    from gmpy2 import is_prime
    for n in range(1000):
       if(is_prime(n) and is_prime(n+20)):
          print('{}, {}'.format(n,n+20),end=', ')
    # Soumil Mandal, May 14 2016

Formula

a(2n+1) = A153419(n+1).

Extensions

Edited by Bruno Berselli, May 12 2016

A289907 Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.

Original entry on oeis.org

1979, 5399, 11813, 41213, 42443, 44249, 47129, 55799, 57773, 74699, 79613, 84299, 88643, 126473, 143813, 148913, 167099, 176489, 178799, 178889, 209249, 211859, 237143, 266663, 267629, 272249, 272333, 322229, 344153, 348443, 354023, 375083, 391379, 399263, 422069, 449549, 521519, 529673
Offset: 1

Views

Author

Muniru A Asiru, Jul 14 2017

Keywords

Comments

All terms = {23, 29} mod 30.
For initial primes of 5 consecutive primes with consecutive gaps 2,4,6,8 see A190814.
Number of terms less than 10^k: 0, 0, 0, 2, 13, 65, 317, 1563, 8671, 50643, ..., . - Robert G. Wilson v, Dec 07 2017

Examples

			Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
		

Crossrefs

Programs

  • GAP
    I:=[8,6,4,2];;
    P:=Filtered([1..1000000],IsPrime);;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;  Collected(last);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
    P3:=List(Positions(P2,I),i->P[i]);
    
  • Mathematica
    s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* Michael De Vlieger, Jul 14 2017 *)
    p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* Robert G. Wilson v, Dec 07 2017 *)
  • PARI
    is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ David A. Corneth, Jul 23 2017

A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.

Original entry on oeis.org

3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2019

Keywords

Comments

The same as A231608 except that A231608 gives the upward antidiagonals of the array, while this sequence gives the downward antidiagonals.
Conjecture: All values are nonzero, i.e., for any even integer e there are infinitely many primes p such that p + e is also prime.
The conjecture is true if Polignac's conjecture is true.

Examples

			The array starts as follows:
3,  5, 11, 17, 29, 41, 59,  71, 101, 107, 137, 149, 179, 191
3,  7, 13, 19, 37, 43, 67,  79,  97, 103, 109, 127, 163, 193
5,  7, 11, 13, 17, 23, 31,  37,  41,  47,  53,  61,  67,  73
3,  5, 11, 23, 29, 53, 59,  71,  89, 101, 131, 149, 173, 191
3,  7, 13, 19, 31, 37, 43,  61,  73,  79,  97, 103, 127, 139
5,  7, 11, 17, 19, 29, 31,  41,  47,  59,  61,  67,  71,  89
3,  5, 17, 23, 29, 47, 53,  59,  83,  89, 113, 137, 149, 167
3,  7, 13, 31, 37, 43, 67,  73,  97, 151, 157, 163, 181, 211
5, 11, 13, 19, 23, 29, 41,  43,  53,  61,  71,  79,  83,  89
3, 11, 17, 23, 41, 47, 53,  59,  83,  89, 107, 131, 137, 173
7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241
5,  7, 13, 17, 19, 23, 29,  37,  43,  47,  59,  73,  79,  83
		

Crossrefs

Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).

Programs

  • PARI
    row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++))
    array(rows, cols) = for(x=1, rows, row(x, cols); print(""))
    array(12, 14) \\ Print initial 12 rows and 14 columns of the array

A365850 Numbers k for which k^2 + (k')^2 is a square, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

0, 1, 12, 15, 35, 81, 143, 323, 400, 441, 899, 1540, 1763, 2700, 3599, 4641, 5183, 5929, 9375, 10395, 10403, 11663, 13585, 18225, 19043, 21952, 22499, 30576, 32399, 35581, 36863, 39203, 48841, 51983, 57599, 72899, 79523, 97343, 121103, 148176, 166375, 175692, 176399
Offset: 1

Views

Author

Marius A. Burtea, Oct 09 2023

Keywords

Comments

If p and p + 2 are twin primes (A001359) then m = p*(p + 2) is a term. Indeed, m' = p + (p + 2) = 2*p + 2 and m^2 + (m')^2 = p^2*(p + 2)^2 + (2*p + 2)^2 = (p^2 + 2*p + 2)^2.
More generally, if p and p + 2*k, k >= 1, are prime numbers, then m = p^k*(p + 2*k)^k is a term. Indeed, m' = k*p^(k - 1)*(p + 2*k)^k+ k*p^k*(p + 2*k)^(k - 1) = k*p^(k - 1)*(p + 2*k)^(k-1)*(2*p + 2*k). Thus, m^2 + (m')^2 = p^(2*k)*(p + 2*k)^(2*k) + (k^2)*p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*p + 2*k)^2 = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(p^2*(p + 2*k)^2 + k^2*(2*p + 2*k)^2) = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*k^2 + 2*k*p + p^2)^2.

Examples

			For k = 12, k' = 16 and 12^2 + 16^2 = 144 + 256 = 400 = 20^2, so 12 is a term.
For k = 15, k' = 8 and 15^2 + 8^2 = 225 + 64 = 289 = 17^2, so 15 is a term.
For k = 143, k' = 24 and 143^2 + 24^2 = 144 + 256 = 21025 = 145^2, so 143 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [0..200000] |IsSquare( n^2+( Floor(f(n))^2))];
  • Maple
    ader:= proc(n) local f;   n*add(f[2]/f[1], f=ifactors(n)[2]) end proc:
    select(t -> issqr(t^2 + ader(t)^2), [$0..10^6]; # Robert Israel, Oct 17 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 180000], IntegerQ[Sqrt[#^2 + d[#]^2]] &] (* Amiram Eldar, Oct 11 2023 *)
Showing 1-8 of 8 results.