cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A238379 Expansion of (1 - x)/(1 - 36*x + x^2).

Original entry on oeis.org

1, 35, 1259, 45289, 1629145, 58603931, 2108112371, 75833441425, 2727895778929, 98128414600019, 3529895029821755, 126978092658983161, 4567681440693572041, 164309553772309610315, 5910576254362452399299, 212616435603275976764449
Offset: 0

Views

Author

Bruno Berselli, Feb 25 2014

Keywords

Comments

First bisection of A041611.

Crossrefs

Cf. similar sequences with g.f. (1-x)/(1-k*x+x^2): A122367 (k=3), A079935 (k=4), A004253 (k=5), A001653 (k=6), A049685 (k=7), A070997 (k=8), A070998 (k=9), A138288 (k=10), A078922 (k=11), A077417 (k=12), A085260 (k=13), A001570 (k=14), A160682 (k=15), A157456 (k=16), A161595 (k=17). From 18 to 38, even k only, except k=27 and k=31: A007805 (k=18), A075839 (k=20), A157014 (k=22), A159664 (k=24), A153111 (k=26), A097835 (k=27), A159668 (k=28), A157877 (k=30), A111216 (k=31), A159674 (k=32), A077420 (k=34), this sequence (k=36), A097315 (k=38).

Programs

  • Magma
    [n le 2 select 35^(n-1) else 36*Self(n-1)-Self(n-2): n in [1..20]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1 - x)/(1 - 36*x + x^2))); // Marius A. Burtea, Jan 14 2020
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 36 x + x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{36, -1}, {1, 35}, 20]
  • PARI
    a(n)=([0,1; -1,36]^n*[1;35])[1,1] \\ Charles R Greathouse IV, May 10 2016
  • Sage
    m = 20; L. = PowerSeriesRing(ZZ, m); f = (1-x)/(1-36*x+x^2)
    print(f.coefficients())
    

Formula

G.f.: (1 - x)/(1 - 36*x + x^2).
a(n) = a(-n-1) = 36*a(n-1) - a(n-2).
a(n) = ((19-sqrt(323))/38)*(1+(18+sqrt(323))^(2*n+1))/(18+sqrt(323))^n.
a(n+1) - a(n) = 34*A144128(n+1).
323*a(n+1)^2 - ((a(n+2)-a(n))/2)^2 = 34.
Sum_{n>0} 1/(a(n) - 1/a(n)) = 1/34.
See also Tanya Khovanova in Links field:
a(n) = 35*a(n-1) + 34*Sum_{i=0..n-2} a(i).
a(n+2)*a(n) - a(n+1)^2 = 36-2 = 34 = 34*1,
a(n+3)*a(n) - a(n+1)*a(n+2) = 36*(36-2) = 1224 = 34*36.
Generalizing:
a(n+4)*a(n) - a(n+1)*a(n+3) = 44030 = 34*1295,
a(n+5)*a(n) - a(n+1)*a(n+4) = 1583856 = 34*46584,
a(n+6)*a(n) - a(n+1)*a(n+5) = 56974786 = 34*1675729, etc.,
where 1, 36, 1295, 46584, 1675729, ... is the sequence A144128, which is the second bisection of A041611.
a(n)^2 - 36*a(n)*a(n+1) + a(n+1)^2 + 34 = 0 (see comments by Colin Barker in similar sequences).

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A159678 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2-equation problem 7*n(j) + 1 = a(j)*a(j) and 9*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Original entry on oeis.org

1, 17, 271, 4319, 68833, 1097009, 17483311, 278635967, 4440692161, 70772438609, 1127918325583, 17975920770719, 286486814005921, 4565813103324017, 72766522839178351, 1159698552323529599, 18482410314337295233, 294558866477073194129, 4694459453318833810831
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

The sequence a(j) is A157456, the sequence n(j) is A159679, the sequence b(j) the sequence given here.
Numbers k such that 7*k^2 + 2 is a square. - Colin Barker, Mar 17 2014

Crossrefs

Programs

  • Magma
    [n le 2 select 17^(n-1) else 16*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 03 2018
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
    n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq(simplify(ChebyshevU(n-1,8) + ChebyshevU(n-2,8)), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    Rest[CoefficientList[Series[x (1+x)/(1-16x+x^2),{x,0,30}],x]] (* or *) LinearRecurrence[{16,-1},{1,17},30] (* Harvey P. Dale, Dec 25 2011 *)
  • PARI
    Vec(x*(1+x)/(1-16*x+x^2) + O(x^30)) \\ Michel Marcus, Jan 03 2016
    
  • PARI
    a(n) = round((-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/(2*sqrt(7))) \\ Colin Barker, Jul 25 2016
    
  • Sage
    [(lucas_number2(n,16,1)-lucas_number2(n-1,16,1))/14 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

The b(j) recurrence (this sequence) is b(1)=1, b(2)=17, b(t+2) = 16*b(t+1) - b(t).
From R. J. Mathar, Oct 31 2011: (Start)
G.f.: x*(1+x) / ( 1-16*x+x^2 ).
a(n) = A077412(n-1) + A077412(n-2). (End)
a(n) = 16*a(n-1) - a(n-2), with a(1)=1, a(2)=17. - Harvey P. Dale, Dec 25 2011
a(n) = ( (3-sqrt(7))*(8+3*sqrt(7))^n - (3+sqrt(7))*(8-3*sqrt(7))^n )/(2*sqrt(7)). - Colin Barker, Jul 25 2016

Extensions

More terms from Zerinvary Lajos, Nov 10 2009

A257711 Triangular numbers (A000217) that are the sum of seven consecutive triangular numbers.

Original entry on oeis.org

210, 3486, 51681, 883785, 13125126, 224476266, 3333728685, 57016086141, 846753959226, 14481861401910, 215072171913081, 3678335779997361, 54627484911961710, 934282806257926146, 13875166095466359621, 237304154453733242085, 3524237560763543380386
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			210 is in the sequence because T(20) = 210 = 10+15+21+28+36+45+55 = T(4)+ ... +T(10).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 254, -254, -1, 1}, {210, 3486, 51681, 883785, 13125126}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))

Formula

G.f.: -21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).
16*a(n) = 104 +225*A157456(n+1) +7*(-1)^n*A159678(n+1). - R. J. Mathar, Apr 28 2020

A243469 Denominators of the rational convergents to the periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))).

Original entry on oeis.org

1, 2, 15, 32, 239, 510, 3809, 8128, 60705, 129538, 967471, 2064480, 15418831, 32902142, 245733825, 524369792, 3916322369, 8357014530, 62415424079, 133187862688, 994730462895, 2122648788478, 15853271982241, 33829192752960, 252657621252961, 539144435258882
Offset: 1

Views

Author

Peter Bala, Jun 06 2014

Keywords

Comments

The sequence of convergents to the simple periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))) begins [0/1, 1/2, 7/15, 15/32, 112/239, 239/510, ...]. Euler considers these convergents, in section 378 of the first volume of his textbook Introductio in Analysin Infinitorum, as a way of finding rational approximations to sqrt(7). The present sequence is the sequence of denominators of the convergents. It is a strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. The sequence is closely related to A041111, the Lehmer numbers U_n(sqrt(R),Q) with parameters R = 14 and Q = -1.
See A243470 for the sequence of numerators to the convergents.

Crossrefs

Programs

Formula

Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = 2*(alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(2*n + 1) = Product_{k = 1..n} (14 + 4*cos^2(k*Pi/(2*n+1)));
a(2*n) = 2*Product_{k = 1..n-1} (14 + 4*cos^2(k*Pi/(2*n))).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 2, a(2*n) = 2*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 7*a(2*n) + a(2*n - 1).
Fourth-order recurrence: a(n) = 16*a(n - 2) - a(n - 4) for n >= 5.
O.g.f.: x*(1 + 2*x - x^2)/(1 - 16*x^2 + x^4).
a(2n-1) = A157456, a(2n) = 2*A077412(n-1). - Ralf Stephan, Jun 13 2014

A159668 Expansion of (1 - x)/(1 - 28*x + x^2).

Original entry on oeis.org

1, 27, 755, 21113, 590409, 16510339, 461699083, 12911063985, 361048092497, 10096435525931, 282339146633571, 7895399670214057, 220788851619360025, 6174192445671866643, 172656599627192905979, 4828210597115729500769, 135017240119613233115553
Offset: 0

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j) + 1 = a(j)*a(j) and 15*n(j) + 1 = b(j)*b(j) with positive integer numbers.
Positive values of x (or y) satisfying x^2 - 28*x*y + y^2 + 26 = 0. - Colin Barker, Feb 23 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    [n le 2 select 27^(n-1) else 28*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then
    n:=(a*a-1)/13: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
    # Second program
    seq(simplify(ChebyshevU(n,14) -ChebyshevU(n-1,14)), n=0..40); # G. C. Greubel, Sep 26 2022
  • Mathematica
    CoefficientList[Series[(1-x)/(1-28x+x^2), {x,0,40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
    LinearRecurrence[{28,-1},{1,27},40] (* Harvey P. Dale, Apr 09 2014 *)
  • PARI
    Vec((-x+1)/(x^2-28*x+1) + O(x^100)) \\ Colin Barker, Feb 23 2014
    
  • SageMath
    def A159668(n): return chebyshev_U(n,14) - chebyshev_U(n-1,14)
    [A159668(n) for n in range(40)] # G. C. Greubel, Sep 26 2022

Formula

G.f.: (1 - x)/(1 - 28*x + x^2).
The a(j) recurrence is a(0)=1, a(1)=27, a(t+2) = 28*a(t+1) - a(t) resulting in terms 1, 27, 755, 21113, ... (this sequence).
The b(j) recurrence is b(0)=1, b(1)=29, b(t+2) = 28*b(t+1) - b(t) resulting in terms 1, 29, 811, 22679, ... (A159669).
The n(j) recurrence is n(0) = n(1) = 0, n(2) = 56, n(t+3) = 783*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 56, 43848, 34289136, ... (A159673).
a(n) = (1/30)*(15-sqrt(195))*(1+(14+sqrt(195))^(2*n+1))/(14+sqrt(195))^n. - Bruno Berselli, Feb 25 2014
a(n) = 28*a(n-1) - a(n-2), a(0)=1, a(1)=27. - Harvey P. Dale, Apr 09 2014
a(n) = A097311(n) - A097311(n-1). - G. C. Greubel, Sep 26 2022

Extensions

More terms from Colin Barker, Feb 23 2014
New name and offset changed to 0 from Joerg Arndt, Feb 23 2014

A159664 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j), with positive integer numbers.

Original entry on oeis.org

1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273, 104203730401, 2496540143351, 59812759710023, 1433009692897201, 34332419869822801, 822545067182850023, 19706749192518577751, 472139435553263016001, 11311639704085793806273, 271007213462505788334551
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Positive values of x (or y) satisfying x^2 - 24*x*y + y^2 + 22 = 0. - Colin Barker, Feb 19 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    [n le 2 select 23^(n-1) else 24*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a*a-1)/11: La:=[La),a]:Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq(simplify(ChebyshevU(n-1,12) - ChebyshevU(n-2,12)), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    CoefficientList[Series[(1-x)/(1-24x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    LinearRecurrence[{24,-1}, {1,23}, 30] (* G. C. Greubel, Sep 27 2022 *)
  • PARI
    Vec(x*(1-x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
    
  • PARI
    a(n) = round((12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159664(n): return chebyshev_U(n-1,12) - chebyshev_U(n-2,12)
    [A159664(n) for n in range(1,30)] # G. C. Greubel, Sep 27 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=23, a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (this sequence).
The b(j) recurrence is b(1)=1, b(2)=25, b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1, n(2)=48, n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400, ... (A159665).
G.f.: x*(1-x)/(1 - 24*x + x^2). - Colin Barker, Feb 19 2014
a(n) = (12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26. - Colin Barker, Jul 25 2016
a(n) = A077423(n-1) - A077423(n-2). - G. C. Greubel, Sep 27 2022

Extensions

More terms from Colin Barker, Feb 19 2014

A159674 Expansion of (1 - x)/(1 - 32*x + x^2).

Original entry on oeis.org

1, 31, 991, 31681, 1012801, 32377951, 1035081631, 33090234241, 1057852414081, 33818187016351, 1081124132109151, 34562154040476481, 1104907805163138241, 35322487611179947231, 1129214695752595173151, 36099547776471865593601, 1154056314151347103822081
Offset: 0

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 15*n(j) + 1 = a(j)*a(j) and 17*n(j) + 1 = b(j)*b(j) with positive integers.
Positive values of x (or y) satisfying x^2 - 32*x*y + y^2 + 30 = 0. - Colin Barker, Feb 24 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    A029548:= func< n | Evaluate(ChebyshevSecond(n),16) >;
    [A029548(n+1) -A029548(n): n in [0..30]]; // G. C. Greubel, Sep 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((17*a*a-2)/15): if (trunc(b)=b) then
    n:=(a*a-1)/15: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
    # Second program
    seq(simplify(ChebyshevU(n, 16) -ChebyshevU(n-1, 16)), n=0..30); # G. C. Greubel, Sep 25 2022
  • Mathematica
    CoefficientList[Series[(1-x)/(1-32*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    LinearRecurrence[{32,-1},{1,31},30] (* Harvey P. Dale, Mar 21 2017 *)
  • PARI
    concat([0], Vec((-x+1)/(x^2-32*x+1) + O(x^100))) \\ Colin Barker, Feb 24 2014
    
  • SageMath
    def A159674(n): return chebyshev_U(n, 16) - chebyshev_U(n-1, 16)
    [A159674(n) for n in range(31)] # G. C. Greubel, Sep 25 2022

Formula

The a(j) recurrence is: a(0)=1, a(1)=31, a(t+2) = 32*a(t+1) - a(t) resulting in terms 1, 31, 991, 31681, ... (this sequence).
The b(j) recurrence is: b(0)=1, b(1)=33, b(t+2) = 32*b(t+1) - b(t) resulting in terms 1, 33, 1055, 33727, ... (A159675).
The n(j) recurrence is: n(-1) = n(0) = 0, n(1) = 64, n(t+3) = 1023*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 64, 65472, 66912384, ... (A159677).
a(n) = (1/34)*(17-sqrt(255))*(1+(16+sqrt(255))^(2*n+1))/(16+sqrt(255))^n. - Bruno Berselli, Feb 25 2014
a(n) = ChebyshevU(n, 16) - ChebyshevU(n-1, 16) = A029548(n) - A029548(n-1). - G. C. Greubel, Sep 25 2022

Extensions

More terms and new name from Colin Barker, Feb 24 2014
Set offset to 0 by Joerg Arndt, Feb 25 2014

A159661 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j) with positive integer elements. the solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j); 13*n(j) + 1 = b(j)*b(j); with integer numbers.

Original entry on oeis.org

1, 25, 599, 14351, 343825, 8237449, 197354951, 4728281375, 113281398049, 2714025271801, 65023325125175, 1557845777732399, 37323275340452401, 894200762393125225, 21423495022094552999, 513269679767876146751, 12297048819406932969025, 294615901985998515109849
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 24*n-23 else 24*Self(n-1) -Self(n-2): n in [1..31]]; // G. C. Greubel, Jun 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a^2-1)/C: La:=[op(La),a]: Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    LinearRecurrence[{24,-1}, {1,25}, 31] (* G. C. Greubel, Jun 25 2022 *)
  • PARI
    Vec(x*(x+1)/(x^2-24*x+1) + O(x^20)) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n) = round((12+sqrt(143))^(-n)*(-11-sqrt(143)+(-11+sqrt(143))*(12+sqrt(143))^(2*n))/22) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [chebyshev_U(n-1, 12) + chebyshev_U(n-2, 12) for n in (1..30)] # G. C. Greubel, Jun 25 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t); resulting in a(j) terms 1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273.
The b(j) recurrence is b(1)=1; b(2)=23; b(t+2) = 24*b(t+1) - b(t); resulting in b(j) terms 1, 25, 599, 14351, 343825, 8237449 as listed above.
The n(j) recurrence is n(0)=n(1)=0; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in n(j) terms 0, 0, 48, 27600, 15842400, 9093510048, 5219658925200.
From Colin Barker, Sep 25 2015: (Start)
a(n) = 24*a(n-1)-a(n-2) for n>2.
G.f.: x*(1+x) / (1 - 24*x + x^2). (End)
a(n) = (12+sqrt(143))^(-n)*(-11 - sqrt(143) + (-11+sqrt(143))*(12+sqrt(143))^(2*n))/22. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = ChebyshevU(n-1, 12) + Chebyshev(n-2, 12).
E.g.f.: exp(12*x)*(cosh(sqrt(143)*x) + sqrt(13/11)*sinh(sqrt(143)*x)). (End)

A159669 Expansion of x*(1 + x)/(1 - 28*x + x^2).

Original entry on oeis.org

1, 29, 811, 22679, 634201, 17734949, 495944371, 13868707439, 387827863921, 10845311482349, 303280893641851, 8481019710489479, 237165271000063561, 6632146568291290229, 185462938641156062851, 5186330135384078469599, 145031780852113041085921
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j) + 1 = a(j)*a(j) and 15*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Crossrefs

Programs

  • Magma
    A097311:= func< n | Evaluate(ChebyshevSecond(n-1), 14) >;
    [A097311(n+1) + A097311(n): n in [1..30]]; // G. C. Greubel, Sep 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then
    n:=(a*a-1)/13: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
    # Second program
    seq(simplify(ChebyshevU(n, 14) +ChebyshevU(n-1, 14)), n=1..30); # G. C. Greubel, Sep 25 2022
  • Mathematica
    CoefficientList[Series[(1+x)/(1-28x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    LinearRecurrence[{28,-1},{1,29},20] (* Harvey P. Dale, Jul 01 2019 *)
  • PARI
    Vec(x*(x+1)/(x^2-28*x+1) + O(x^100)) \\ Colin Barker, Feb 24 2014
    
  • PARI
    a(n) = round((14+sqrt(195))^(-n)*(-13-sqrt(195)+(-13+sqrt(195))*(14+sqrt(195))^(2*n))/26) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159669(n): return chebyshev_U(n-1, 14) + chebyshev_U(n-2, 14)
    [A159669(n) for n in range(1,30)] # G. C. Greubel, Sep 25 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=27, a(t+2) = 28*a(t+1) - a(t) resulting in terms 1, 27, 755, 21113, ... (A159668).
The b(j) recurrence is b(1)=1, b(2)=29, b(t+2) = 28*b(t+1) - b(t) resulting in terms 1, 29, 811, 22679, ... (this sequence).
The n(j) recurrence is n(0) = n(1) = 0, n(2) = 56, n(t+3) = 783*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 56, 43848, 34289136, ... (A159673).
G.f.: x*(1+x)/(1-28*x+x^2). - Vincenzo Librandi, Feb 26 2014
a(n) = (14+sqrt(195))^(-n)*(-13-sqrt(195)+(-13+sqrt(195))*(14+sqrt(195))^(2*n))/26. - Colin Barker, Jul 25 2016
a(n) = chebyshev_U(n-1, 14) + chebyshev_U(n-2, 14) = A097311(n) + A097311(n-1). - G. C. Greubel, Sep 25 2022

Extensions

More terms and new name from Colin Barker, Feb 24 2014
Showing 1-10 of 20 results. Next