A321798
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4).
Original entry on oeis.org
1, 1, 5, 23, 117, 636, 3607, 21106, 126489, 772468, 4789844, 30075937, 190851839, 1222000222, 7885041530, 51222338580, 334720178969, 2198755865424, 14511029102232, 96169424666028, 639757737711300, 4270520564506069, 28595671605541357, 192025292117465445, 1292866976587651519
Offset: 0
-
List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+3*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
-
a[n_] := Sum[Binomial[n, k] * Binomial[n + 3k - 1, n - k]/(n - k + 1), {k, 0,
n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(n+3*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
A161798
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^3)^2.
Original entry on oeis.org
1, 2, 9, 46, 262, 1590, 10081, 65986, 442518, 3024772, 20996141, 147603198, 1048747751, 7519252606, 54332565330, 395264527626, 2892666314150, 21281120904168, 157299607827727, 1167582500757800, 8699515577902203
Offset: 0
-
Table[Sum[Binomial[2*n-k+1,k]/(n-k+1)*Binomial[n+2*k-1,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n,m=1)=sum(k=0,n,binomial(2*n-k+m,k)*m/(n-k+m)*binomial(n+2*k-1,n-k))}
A321799
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^5).
Original entry on oeis.org
1, 1, 6, 31, 176, 1071, 6797, 44493, 298279, 2037550, 14131441, 99244564, 704360703, 5043969503, 36399930179, 264451303466, 1932650461883, 14198082537190, 104792195449688, 776681663951998, 5778226417888171, 43135097969972931, 323012620411650708, 2425745980876575899, 18264470545275495152
Offset: 0
-
List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+4*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
-
[1] cat [&+[(Binomial(n,k)/(n-k+1)) * Binomial(n+4*k-1,n-k): k in [0..n]]: n in [1.. 25]]; // Vincenzo Librandi, Dec 08 2018
-
eq:= a - 1/(1-x/(1-x*a)^5):
S:= series(RootOf(numer(eq),a),x,31):
seq(coeff(S,x,j),j=0..30); # Robert Israel, Dec 10 2018
-
a[n_]:=Sum[ Binomial[n,k]/(n-k+1)*Binomial[n+4*k-1,n-k], {k,0,n}]; Array[a, 20, 0] (* Stefano Spezia, Nov 19 2018 *)
A[] = 0; Do[A[x] = 1/(1-x/(1-x*A[x])^5)+O[x]^25, {25}];
CoefficientList[A[x], x] (* Jean-François Alcover, Dec 30 2018 *)
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(n+4*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
-
[sum(binomial(n,k)*binomial(n+4*k-1,n-k)/(n-k+1) for k in (0..n)) for n in range(25)] # G. C. Greubel, Dec 14 2018
A365113
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^3.
Original entry on oeis.org
1, 1, 3, 9, 31, 114, 438, 1739, 7077, 29364, 123756, 528324, 2279868, 9928679, 43580301, 192601419, 856317717, 3827501985, 17188943523, 77521747638, 350959738842, 1594390493067, 7266093316649, 33209221327752, 152182572790008, 699083290518817, 3218624408121555
Offset: 0
-
a(n, s=3) = sum(k=0, n, binomial(n-k+1, k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A365086
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^3.
Original entry on oeis.org
1, 1, -2, -2, 15, -4, -122, 204, 903, -3374, -4635, 43539, -13233, -475123, 873392, 4244591, -16906773, -24952174, 244162840, -74520792, -2901715074, 5483226036, 27740164293, -112969486284, -172903931727, 1714556657881, -513739179725, -21235809823325
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+2*k-1, n-k)/(n-k+1));
A161799
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^2)^3.
Original entry on oeis.org
1, 3, 12, 61, 345, 2085, 13182, 86106, 576543, 3936029, 27294390, 191722887, 1361291244, 9754412169, 70447946556, 512278417176, 3747570671685, 27561220671408, 203657352324178, 1511270129552163, 11257532921742528
Offset: 0
-
A161799 := proc(n)
local s,t ;
s := 2 ;
t := 3;
add( binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k) /(n-k+1) ,k=0..n) ;
end proc:
seq(A161799(n),n=0..40) ; # R. J. Mathar, May 12 2022
-
Table[Sum[Binomial[3*n-2*k+2,k]/(n-k+1)*Binomial[n+k-1,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n,m=1)=sum(k=0,n,binomial(3*n-2*k+3*m-1,k)*m/(n-k+m)*binomial(n+k-1,n-k))}
A367233
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^3.
Original entry on oeis.org
1, 1, 6, 39, 284, 2223, 18267, 155445, 1358073, 12111306, 109802183, 1009001571, 9376972698, 87978198364, 832223905371, 7928413841673, 76002832317437, 732578811761670, 7095717550127526, 69029297500888522, 674181392461483212, 6607910786529613248
Offset: 0
-
a(n, s=3, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A349022
G.f. satisfies A(x) = 1/(1 - x/(1 - x*A(x))^3)^4.
Original entry on oeis.org
1, 4, 22, 152, 1161, 9460, 80550, 708172, 6379368, 58576168, 546215580, 5158542152, 49239812893, 474285453628, 4604149947276, 44999181550032, 442430807369519, 4372944634271688, 43425156714959956, 433049078716727332, 4334925824762251939
Offset: 0
-
A349022 := proc(n)
add(binomial(4*n-3*(k-1),k)*binomial(n+2*k-1,n-k)/(n-k+1),k=0..n) ;
end proc:
seq(A349022(n),n=0..40) ; # R. J. Mathar, Jan 25 2023
-
a(n, s=3, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A365135
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^2.
Original entry on oeis.org
1, 2, 11, 68, 467, 3418, 26133, 206264, 1667908, 13746476, 115050074, 975180582, 8354044986, 72215867960, 629139381448, 5518236646614, 48689379017014, 431868759238498, 3848616161600778, 34441553184113542, 309390614528633311, 2788841905397090626
Offset: 0
-
a(n, s=3, t=2) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);
A365136
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^3.
Original entry on oeis.org
1, 3, 21, 172, 1563, 15141, 153240, 1601160, 17140686, 187026210, 2072333697, 23255417925, 263757940688, 3018654757212, 34817822871933, 404324843585061, 4723248984803013, 55467143334798210, 654435356605769574, 7753961433310798095, 92220463998917459652
Offset: 0
-
a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);
Showing 1-10 of 10 results.