A161797
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^3).
Original entry on oeis.org
1, 1, 4, 16, 71, 336, 1660, 8464, 44207, 235306, 1271807, 6961307, 38508659, 214950425, 1209170536, 6848080767, 39014400171, 223439516338, 1285660965508, 7428738358924, 43087099589998, 250766507928988, 1464026402082801
Offset: 0
-
Table[Sum[Binomial[n,k]/(n-k+1) * Binomial[n+2*k-1,n-k], {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Nov 18 2017 *)
-
{a(n,m=1)=sum(k=0,n,binomial(n+m-1,k)*m/(n-k+m)*binomial(n+2*k-1,n-k))}
A365114
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^4.
Original entry on oeis.org
1, 1, 4, 14, 56, 241, 1080, 4998, 23704, 114588, 562552, 2797138, 14057140, 71288385, 364360204, 1874960408, 9706035408, 50510552881, 264096980192, 1386676113360, 7308650513232, 38654087828310, 205076534841112, 1091144400876394, 5820924498941668
Offset: 0
-
a(n, s=4) = sum(k=0, n, binomial(n-k+1, k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A321799
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^5).
Original entry on oeis.org
1, 1, 6, 31, 176, 1071, 6797, 44493, 298279, 2037550, 14131441, 99244564, 704360703, 5043969503, 36399930179, 264451303466, 1932650461883, 14198082537190, 104792195449688, 776681663951998, 5778226417888171, 43135097969972931, 323012620411650708, 2425745980876575899, 18264470545275495152
Offset: 0
-
List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+4*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
-
[1] cat [&+[(Binomial(n,k)/(n-k+1)) * Binomial(n+4*k-1,n-k): k in [0..n]]: n in [1.. 25]]; // Vincenzo Librandi, Dec 08 2018
-
eq:= a - 1/(1-x/(1-x*a)^5):
S:= series(RootOf(numer(eq),a),x,31):
seq(coeff(S,x,j),j=0..30); # Robert Israel, Dec 10 2018
-
a[n_]:=Sum[ Binomial[n,k]/(n-k+1)*Binomial[n+4*k-1,n-k], {k,0,n}]; Array[a, 20, 0] (* Stefano Spezia, Nov 19 2018 *)
A[] = 0; Do[A[x] = 1/(1-x/(1-x*A[x])^5)+O[x]^25, {25}];
CoefficientList[A[x], x] (* Jean-François Alcover, Dec 30 2018 *)
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(n+4*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
-
[sum(binomial(n,k)*binomial(n+4*k-1,n-k)/(n-k+1) for k in (0..n)) for n in range(25)] # G. C. Greubel, Dec 14 2018
A365087
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^4.
Original entry on oeis.org
1, 1, -3, -1, 29, -44, -265, 1114, 1369, -19076, 20388, 250977, -875281, -2116594, 19136754, -7765108, -306092007, 830209808, 3388957208, -22266676364, -8185922076, 413223401045, -814031607979, -5513566634947, 27558060911119, 35395095404776
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+3*k-1, n-k)/(n-k+1));
A367235
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^4.
Original entry on oeis.org
1, 1, 7, 50, 399, 3422, 30798, 286974, 2744947, 26798010, 265945022, 2674970684, 27209385886, 279412999031, 2892787737002, 30161921520976, 316440334960563, 3338105334701396, 35385133077851602, 376732207920371784, 4026682585718602014
Offset: 0
-
a(n, s=4, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A367234
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x))^4.
Original entry on oeis.org
1, 1, 6, 35, 226, 1561, 11276, 84150, 643730, 5021038, 39781858, 319282210, 2590312872, 21208628405, 175024439504, 1454329099044, 12157356271998, 102170610282040, 862721635191860, 7315768816166027, 62274763166575410, 531950072655682896, 4558282056420235664
Offset: 0
-
a(n, s=4, t=2, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A349023
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^2.
Original entry on oeis.org
1, 2, 11, 64, 417, 2892, 20941, 156500, 1198049, 9346690, 74042938, 594001236, 4815995027, 39399831458, 324840184326, 2696343599336, 22514057175337, 188977375146888, 1593661234493561, 13495942411592260, 114723671513478118, 978570384358686064
Offset: 0
-
a(n, s=4, t=2) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
A349024
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.
Original entry on oeis.org
1, 3, 18, 124, 951, 7764, 66200, 582594, 5252133, 48254668, 450186720, 4253328540, 40612877001, 391300954065, 3799506069816, 37142836241690, 365255937037437, 3610755090793272, 35861607622930556, 357670540310182842, 3580797575489620740
Offset: 0
-
a(n, s=4, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
Showing 1-8 of 8 results.