cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008955 Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0

Views

Author

Keywords

Comments

Discussion of Central Factorial Numbers by N. J. A. Sloane, Feb 01 2011: (Start)
Here is Riordan's definition of the central factorial numbers t(n,k) given in Combinatorial Identities, Section 6.5:
For n >= 0, expand the polynomial
x^[n] = x*Product{i=1..n-1} (x+n/2-i) = Sum_{k=0..n} t(n,k)*x^k.
The t(n,k) are not always integers. The cases n even and n odd are best handled separately.
For n=2m, we have:
x^[2m] = Product_{i=0..m-1} (x^2-i^2) = Sum_{k=1..m} t(2m,2k)*x^(2k).
E.g. x^[8] = x^2(x^2-1^2)(x^2-2^2)(x^2-3^2) = x^8-14x^6+49x^4-36x^2,
which corresponds to row 4 of the present triangle.
So the m-th row of the present triangle gives the absolute values of the coefficients in the expansion of Product_{i=0..m-1} (x^2-i^2).
Equivalently, and simpler, the n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first.
For n odd, n=2m+1, we have:
x^[2m+1] = x*Product_{i=0..m-1}(x^2-((2i+1)/2)^2) = Sum_{k=0..m} t(2m+1,2k+1)*x^(2k+1).
E.g. x^[5] = x(x^2-(1/2)^2)(x^2-(3/2)^2) = x^5-10x^3/4+9x/16,
which corresponds to row 2 of the triangle in A008956.
We now rescale to get integers by replacing x by x/2 and multiplying by 2^(2m+1) (getting 1, -10, 9 from the example).
The result is that row m of triangle A008956 gives the coefficients in the expansion of x*Product_{i=0..m} (x^2-(2i+1)^2).
Equivalently, and simpler, the n-th row of A008956 gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first.
Note that the n-th row of A182867 gives the coefficients in the expansion of Product_{i=1..n} (x+(2i)^2), highest powers first.
(End)
Contribution from Johannes W. Meijer, Jun 18 2009: (Start)
We define Beta(n-z,n+z)/Beta(n,n) = Gamma(n-z)*Gamma(n+z)/Gamma(n)^2 = sum(EG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. The EG2[2m,n] coefficients are quite interesting, see A161739. Our definition leads to EG2[2m,1] = 2*eta(2m) and the recurrence relation EG2[2m,n] = EG2[2m,n-1] - EG2[2m-2,n-1]/(n-1)^2 for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... , with eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. We found for the matrix coefficients EG2[2m,n] = sum((-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2,k=1..n) with the central factorial numbers t1(n,m) as defined above, see also the Maple program.
From the EG2 matrix we arrive at the ZG2 matrix, see A161739 for its odd counterpart, which is defined by ZG2[2m,1] = 2*zeta(2m) and the recurrence relation ZG2[2m,n] = ZG2[2m-2,n-1]/(n*(n-1))-(n-1)*ZG2[2m,n-1]/n for m = -2, -1, 0, 1, 2, ... and n = 2, 3, ... . We found for the ZG2[2m,n] = Sum_{k=1..n} (-1)^(k+1)*t1(n-1,k-1)* 2* zeta(2*m-2*n+2*k)/((n-1)!*(n)!), and we see that the central factorial numbers t1(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   5,   4;
  1,  14,  49,  36;
  1,  30, 273, 820, 576;
  ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A036969.
Columns include A000330, A000596, A000597. Right-hand columns include A001044, A001819, A001820, A001821. Row sums are in A101686.
Appears in A160464 (Eta triangle), A160474 (Zeta triangle), A160479 (ZL(n)), A161739 (RSEG2 triangle), A161742, A161743, A002195, A002196, A162440 (EG1 matrix), A162446 (ZG1 matrix) and A163927. - Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
Cf. A234324 (central terms).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        elif k=n then return (Factorial(n))^2;
        else return n^2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
  • Haskell
    a008955 n k = a008955_tabl !! n !! k
    a008955_row n = a008955_tabl !! n
    a008955_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Magma
    T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
    
  • Maple
    nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
    t1 := proc(n,k)
            sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
    end proc: # Mircea Merca, Apr 02 2012
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k=0, 1,
          add(T(j-1, k-1)*j^2, j=1..n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
    (* Jean-François Alcover, May 30 2011, after recurrence formula *)
  • Maxima
    T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
    
  • PARI
    T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
    for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
    
  • Sage
    # This triangle is (0,0)-based.
    def A008955(n, k) :
        if k==0 : return 1
        if k==n : return factorial(n)^2
        return n^2*A008955(n-1, k-1) + A008955(n-1, k)
    for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
    

Formula

The n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first (see Comments section).
The triangle can be obtained from the recurrence t1(n,k) = n^2*t1(n-1,k-1) + t1(n-1,k) with t1(n,0) = 1 and t1(n,n) = (n!)^2.
t1(n,k) = Sum_{j=-k..k} (-1)^j*s(n+1,n+1-k+j)*s(n+1,n+1-k-j) = Sum_{j=0..2*(n+1-k)} (-1)^(n+1-k+j)*s(n+1,j)*s(n+1,2*(n+1-k)-j), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 02 2012
E.g.f.: cosh(2/sqrt(t)*asin(sqrt(t)*z/2)) = 1 + z^2/2! + (1 + t)*z^4/4! + (1 + 5*t + 4*t^2)*z^6/6! + ... (see Berndt, p.263 and p.306). - Peter Bala, Aug 29 2012
T(n,m) = (2*(n+1))!*Sum_{k=0..m} ((-1)^k*binomial(n,m-k)*Sum_{i=0..2*k} ((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1, 2*(n-m+1)+i-1))/(2*(n-m+1)+i)!)). - Vladimir Kruchinin, Oct 05 2013

Extensions

There's an error in the last column of Riordan's table (change 46076 to 21076).
More terms from Vladeta Jovovic, Apr 16 2000
Link added and cross-references edited by Johannes W. Meijer, Aug 17 2009
Discussion of Riordan's definition of central factorial numbers added by N. J. A. Sloane, Feb 01 2011

A160474 The Zeta triangle.

Original entry on oeis.org

-1, 51, -10, -10594, 2961, -210, 356487, -115940, 12642, -420, -101141295, 35804857, -4751890, 254562, -4620, 48350824787, -18071509911, 2689347661, -180909586, 5471466, -60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The coefficients of the ZS1 matrix are defined by ZS1[2*m-1,n] = (2^(2*m-1))*int(y^(2*m-1)/(sinh(y))^(2*n), y=0..infinity)/factorial(2*m-1) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= (m-1).
This definition leads to ZS1[2*m-1,n=1] = 2*zeta(2*m-1), for m = 2, 3, .. , and the recurrence relation ZS1[2*m-1,n]:=(1/(2*n-1))*((2/(n-1))*ZS1[2*m-3,n-1]-(2*n-2)*ZS1[2*m-1,n-1]). As usual zeta(m) is the Riemann zeta function. These two formulas enable us to determine the values of the ZS[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZS1[1,n=1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZS1 matrix, for m = 1, 2, 3, .., and n = 2, 3, 4 .. , can be generated with the GH(z;n) polynomials for which we found the following general expression GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n).
The CFN1(z;n) polynomials depend on the central factorial numbers A008955.
The ZETA(z;n) are the Zeta polynomials which lead to the Zeta triangle.
The zero patterns of the Zeta polynomials resemble a UFO. These patterns resemble those of the Eta, Beta and Lambda polynomials, see A160464, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Zeta triangle. The second Maple algorithm generates the ZS1[2*m-1,n] coefficients for m= 0, -1, -2, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators in Taylor series for tan(x), i.e., A156769(n).
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle ZETA(n,m) with n=2,3,... and m=1,2,... are
  [ -1],
  [51, -10],
  [ -10594, 2961, -210],
  [356487, -115940, 12642, -420].
The first few ZETA(z;n) polynomials are
  ZETA(z;n=2) = -1,
  ZETA(z;n=3) = 51-10*z^2,
  ZETA(z;n=4) = -10594 + 2961*z^2 - 210*z^4.
The first few CFN1(z;n) polynomials are
  CFN1(z;n=2) = (z^2-1),
  CFN1(z;n=3) = (z^4 - 5*z^2 + 4),
  CFN1(z;n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GH(z;n) are
  GH(z;n=2) = (6*(z^2-1)*GH(z;n=1) + (-1)) / 9,
  GH(z;n=3) = (60*(z^4-5*z^2+4)*GH(z;n=1) + (51-10*z^2)) / 450,
  GH(z;n=4) = (1260*(z^6-14*z^4+49*z^2-36)*GH(z;n=1) + (-10594+2961*z^2-210*z^4))/99225.
		

Crossrefs

A160475 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160477 equals the rows sums.
A160478 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The ZS1[ -1, n] and the Omega(n) coefficients lead to A002195 and A002196.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. The Eta, Beta and Lambda triangles A160464, A160480 and A160487.
Cf. A162446 (ZG1 matrix)

Programs

  • Maple
    nmax:=7; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do Zc(n) := (Omega(n)*2^(2*n-1))*2/((2*n+1)*(n)) end do: c(1) := denom(Zc(1)): for n from 2 to nmax do c(n) := lcm(c(n-1)*(n)*(2*n+1)/2, denom(Zc(n))); p(n) := c(n-1) end do: y(1):=Zc(1): for n from 1 to nmax-1 do y(n+1) := Zc(n+1) - ((2*n+2)/(2*n+3))*y(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: mmax := nmax: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1): ZETA(n, n) := 0 end do: for m from 2 to mmax do for n from m+1 to nmax do ZETA(n, m) := ZL(n)*(ZETA(n-1, m-1) - (n-1)^2* ZETA(n-1, m)) end do end do; seq(seq(ZETA(n,m), m=1..n-1), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := 10; m := 1; ZS1row := 1-2*m; with(combinat): t1 := proc(n, k): sum((-1)^j * stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: mmax1 := nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!) end do: for m1 from 1 to mmax1 do ZS1[ -2*m1+1, 1] := 2*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ZS1[-2*m1+1, n] := M(n-1)*sum((-1)^(k1+1)*t1(n-1, k1-1) * ZS1[2*k1-2*n-2*m1+1, 1], k1 = 1..n) od: od: seq(ZS1[1-2*m, n], n = 1..nmax1-m+1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

We discovered a remarkable relation between the Zeta triangle coefficients ZETA(n,m) = ZL(n)*(ZETA(n-1,m-1)-(n-1)^2*ZETA(n-1,m)) for n = 3, 4, ... and m = 2, 3, .... See A160475 for ZETA(n,m=1) and furthermore ZETA(n,n) = 0 for n = 2, 3, ....
We observe that the ZL(n) = A160479(n) sequence also rules the Lambda triangle A160487.
The generating functions GH(z;n) of the coefficients in the matrix columns are defined by
GH(z;n) = sum(ZS1[2*m-1,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .... This definition, and our choice of ZS1[1,1] = 2*gamma, leads to GH(z;n=1) = (-Psi(1-z)-Psi(1+z)) with Psi(z) the digamma-function. Furthermore we discovered that GH(z;n) = GH(z;n-1)*(2*z^2/((2*n-1)*(n-1))-(2*n-2)/(2*n-1))+2*ZS1[ -1,n-1]/((2*n-1)*(n-1)) for n = 2, 3 , ..., with ZS1[ -1,n] = 2^(2*n-1)*A002195(n)/A002196(n) for n = 1, 2, ....
We found the following general expression for the GH(z;n) polynomials, for n = 2, 3, ...:
GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160478(n).

A120777 a(n) = 2^(2*n - valuation(CatalanNumber(n), 2)).

Original entry on oeis.org

1, 4, 8, 64, 128, 512, 1024, 16384, 32768, 131072, 262144, 2097152, 4194304, 16777216, 33554432, 1073741824, 2147483648, 8589934592, 17179869184, 137438953472, 274877906944, 1099511627776, 2199023255552, 35184372088832, 70368744177664, 281474976710656, 562949953421312
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Previous name: One half of denominators of partial sums of a series for sqrt(2).
Also denominators of partial sums Sum_{k=0..n} (C(k)/(-4)^k) = A120788(n)/A120777(n).
One half of denominators of partial sums which involve Catalan numbers A000108(k) divided by 4^k with alternating signs.
The listed numbers coincide with the denominators of sum(C(k)/4^k, k=0..n). See numerators A120778. In general these denominators may be different. See e.g. A120783 versus A120793 and A120787 versus A120796.

Crossrefs

Programs

  • Maple
    a := n -> denom(binomial(2*n+2, n+1) / 2^(2*n+1)):
    seq(a(n), n=0..22); # Johannes W. Meijer, Sep 23 2012
    Conjecture: The following Maple program appears to generate this sequence! Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n))/2, n=0..22); # Zerinvary Lajos, May 21 2008
    a := proc(n) option remember: if n = 0 then b(0):=0 else b(n) := b(n-1) + A001511(n+1) fi: a(n) := 2^b(n) end proc: A001511 := proc(n) option remember: if n = 1 then 1 else procname(n-1) + (-1)^n * procname(floor(n/2)) fi: end proc:
    seq(a(n), n=0..22); # Johannes W. Meijer, Jul 06 2009, revised Sep 23 2012
  • Mathematica
    Table[Denominator[CatalanNumber[k]/(-4)^k], {k, 0, 22}] (* Jean-François Alcover, Jun 21 2013 *)
    (* Alternative: *)
    A120777[n_] := 2^(2*n - IntegerExponent[CatalanNumber[n], 2]);
    Table[A120777[n], {n, 0, 26}]  (* Peter Luschny, Apr 16 2024 *)

Formula

a(n) = denominator(r(n)), with the rationals r(n) defined under A120088.
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denominator(C(2*n+2,n+1)/2^(2*n+1)).
If b(n) = log(a(n))/log(2) then c(n) = b(n+1)-b(n) = A001511(n+1) i.e. the ruler function. (End)
a(n) = 2^(2*n- A048881(n)) = 2^A283208(n). - Amiram Eldar, Apr 18 2024

Extensions

New name by Peter Luschny, Apr 16 2024

A162443 Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.

Original entry on oeis.org

5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The BG1 matrix coefficients are defined by BG1[2m-1,1] = 2*beta(2m) and the recurrence relation BG1[2m-1,n] = BG1[2m-1,n-1] - BG1[2m-3,n-1]/(2*n-3)^2 with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). For the BG2 matrix, the even counterpart of the BG1 matrix, see A008956.
We discovered that the n-th term of the row coefficients can be generated with BG1[1-2*m,n] = RBS1(1-2*m,n)* 4^(n-1)*((n-1)!)^2/ (2*n-2)! for m >= 1. For the BS1(1-2*m,n) polynomials see A160485.
The coefficients in the columns of the BG1 matrix, for m >= 1 and n >= 2, can be generated with GFB(z;n) = ((-1)^(n+1)*CFN2(z;n)*GFB(z;n=1) + BETA(z;n))/((2*n-3)!!)^2 for n >= 2. For the CFN2(z;n) and the Beta polynomials see A160480.
The BG1[ -5,n] sequence can be generated with the first Maple program and the BG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The BG1 matrix is related to the BS1 matrix, see A160480 and the formulas below.

Examples

			The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
		

Crossrefs

A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BG1[ -3, n] equal (-1)*A002595(n-1)/A055786(n-1) for n >= 1.
The BG1[ -1, n] equal A046161(n-1)/A001790(n-1) for n >= 1.
The cs(n) equal A046161(n-2)/A001803(n-2) for n >= 2.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to A008956.
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
    # End program 1
    nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(BG1[ -5,n]) and A162444(n) = denom(BG1[ -5,n]) with BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!.
The generating functions GFB(z;n) of the coefficients in the matrix columns are defined by
GFB(z;n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFB(z;n) = (1-z^2/(2*n-3)^2)*GFB(n-1) - 4^(n-2)*(n-2)!^2/((2*n-4)!*(2*n-3)^2) for n => 2 with GFB(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
The column sums cs(n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity) = 4^(n-1)/((2*n-2)*binomial(2*n-2,n-1)) for n >= 2.
BG1[2*m-1,n] = (n-1)!^2*4^(n-1)*BS1[2*m-1,n]/(2*n-2)!

A160476 The first right hand column of the Zeta and Lambda triangles.

Original entry on oeis.org

1, 10, 210, 420, 4620, 60060, 60060, 2042040, 116396280, 581981400, 13385572200, 13385572200, 13385572200, 388181593800, 12033629407800, 24067258815600, 24067258815600, 890488576177200, 890488576177200
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

This intriguing sequence makes its appearance in the Zeta and Lambda triangles.
The first Maple algorithm is related to the Zeta triangle and the second to the Lambda triangle. Both generate the sequence of the first right hand column of these triangles.

Crossrefs

The Zeta and Lambda triangles are A160474 and A160487.
Appears in A162446 (ZG1 matrix) and A162448 (LG1 matrix) [Johannes W. Meijer, Jul 06 2009]

Programs

  • Maple
    nmax := 20; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0) := 1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n) := 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))): p(n+1) := c(n) end do: for n from 2 to nmax do a1(n) := p(n)*2^(2*n-3)/(3*factorial(2*n-1)) od: seq(a1(n), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := nmax: for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax1 do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1), k1=1..n) /(2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1)/ (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax1 do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax1 do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax1 do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax1 do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax1 do a2(n) := p(n)/(6*factorial(2*n-2)) od: seq(a2(n), n=2..nmax1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

a(n) = A160490(n)/(6*(2*n-2)!) for n = 2, 3, .. .
a(n) = A160478(n)*M(n) with M(n) = 2^(2*n-3)/(3*(2*n-1)!) for n=2, 3, .. .
M(n) = A048896(n-2)/(9*M1(n-1)) with M1(n) = (2*n+1)*A000265(n)*M1(n-1) for n = 2, 3, .. , and M1(1) = 1.
a(n+1)/a(n) = A160479(n+1) [Johannes W. Meijer, Oct 07 2009]

A162440 The pg(n) sequence that is associated with the Eta triangle A160464.

Original entry on oeis.org

2, 16, 144, 4608, 115200, 4147200, 203212800, 26011238400, 2106910310400, 210691031040000, 25493614755840000, 3671080524840960000, 620412608698122240000, 121600871304831959040000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The EG1 matrix coefficients are defined by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 with m = .., -2, -1, 0, 1, 2, ... and n = 1, 2, 3, ... . As usual, eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2 matrix, the even counterpart of the EG1 matrix, see A008955.
The coefficients in the columns of the EG1 matrix, for m >= 1 and n >= 2, can be generated with GFE(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GFE(z;n=1) + ETA(z,n))/pg(n) for n >= 2.
The CFN1(z,n) polynomials depend on the central factorial numbers A008955 and the ETA(z,n) are the Eta polynomials which led to the Eta triangle, see for both A160464.
The pg(n) sequence can be generated with the first Maple program and the EG1[2m-1,n] matrix coefficients can be generated with the second Maple program.
The EG1 matrix is related to the ES1 matrix, see A160464 and the formulas below.

Examples

			The first few generating functions GFE(z;n) are:
GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2,
GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16,
GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle A160464.
The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to A008955.
The EG1[ -1, n] equal (1/2)*A001803(n-1)/A046161(n-1).
The r(n) sequence equals A062383(n) (n>=1).
The e(n) sequence equals A029837(n) (n>=1).
Cf. A160473 (p(n) sequence).
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax);
    # End program 1
    nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od;
    # End program 2 (Edited by Johannes W. Meijer, Sep 21 2012)

Formula

pg(n) = (n-1)!^2*2^floor(log(n-1)/log(2)+1) for n >= 2.
r(n) = 2^e(n) = 2^floor(log(n-1)/log(2)+1) for n >= 2.
EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2) for n >= 1.
GFE(z;n) = sum (EG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFE(z;n) = (1-z^2/(n-1)^2)*GFE(z;n-1)-EG1[ -1,n-1]/(n-1)^2 for n = >2. with GFE(z;n=1) = 2*log(2)-Psi(z)-Psi(-z)+Psi(z/2)+Psi(-z/2) and Psi(z) is the digamma function.
EG1[2m-1,n] = (2*2^(1-2*n)*(2*n-1)!/((n-1)!^2)) * ES1[2m-1,n].

A162448 Numerators of the column sums of the LG1 matrix.

Original entry on oeis.org

-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The LG1 matrix coefficients are defined by LG1[2m,1] = 2*lambda(2m+1) for m = 1, 2, .. , and the recurrence relation LG1[2*m,n] = LG1[2*m-2,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG1[2*m,n-1]/(2*n-1) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= m. As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. For the LG2 matrix, the even counterpart of the LG1 matrix, see A008956.
These two formulas enable us to determine the values of the LG1[2*m,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, LG1[0,1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LG1 matrix, for m >= 1 and n >= 2, can be generated with GFL(z;n) = (hg(n)*CFN2(z;n)*GFL(z;n=1) + LAMBDA(z;n))/pg(n) with pg(n) = 6*(2*n-3)!!*(2*n-1)!!*A160476(n) and hg(n) = 6*A160476(n). For the CFN2(z;n) and the LAMBDA(z;n) see A160487.
The values of the column sums cs(n) = sum(LG1[2*m,n], m = 0.. infinity), for n >= 2, can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take LGx[2*m,n] = 2, for m >= 0, and LGx[ -2,n] = LG1[ -2,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The LG1[2*m,n] matrix coefficients can be generated with the second Maple program.
The LG1 matrix is related to the LS1 matrix, see A160487 and the formulas below.

Examples

			The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
		

Crossrefs

See A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to A008956.
The pg(n) and hg(n) sequences lead to A160476.
The LG1[ -2, n] lead to A002197, A002198, A061549 and A001790.
Cf. A001620 (gamma) and A079484 ((2n-1)!!*(2n+1)!!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162446 (ZG1 matrix)

Programs

  • Maple
    nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162449(n).
with cs(n) = sum(LG1[2*m,n], m = 0 .. infinity) for n >= 2.
GFL(z;n) = sum( LG1[2*m,n]*z^(2*m-2),m=1..infinity)
GFL(z;n) = (LG1[ -2,n-1])/((2*n-3)*(2*n-1))+(z^2/((2*n-3)*(2*n-1))-(2*n-3)/(2*n-1))*GFL(z;n-1) with GFL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2)
LG1[ -2,n] = (-1)^(n+1)*4*(A061549(n-1)/A001790(n-1))*(A002197(n-1)/A002198(n-1))
LG1[2*m,n] = (4^(n-1)/((2*n-1)*binomial(2*n-2,n-1)))*LS1[2*m,n]

A162447 Denominators of the column sums of the ZG1 matrix.

Original entry on oeis.org

12, 720, 181440, 7257600, 399168000, 1307674368000, 73229764608000, 731699852083200, 229909239772692480000, 84300054583320576000000, 51186993142992253747200000, 21777738900836704321536000000
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

For the definition of the ZG1 matrix coefficients see A162446.
We define the columns sums by cs(n) = sum(ZG1[2*m-1,n], m = 1.. infinity) for n => 2.

Crossrefs

See A162446 for the numerators of the column sums.

Formula

a(n) = denom(cs(n)) and numer(cs(n)) = A162446(n).
Showing 1-8 of 8 results.