cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A195055 Decimal expansion of Pi^2/3.

Original entry on oeis.org

3, 2, 8, 9, 8, 6, 8, 1, 3, 3, 6, 9, 6, 4, 5, 2, 8, 7, 2, 9, 4, 4, 8, 3, 0, 3, 3, 3, 2, 9, 2, 0, 5, 0, 3, 7, 8, 4, 3, 7, 8, 9, 9, 8, 0, 2, 4, 1, 3, 5, 9, 6, 8, 7, 5, 4, 7, 1, 1, 1, 6, 4, 5, 8, 7, 4, 0, 0, 1, 4, 9, 4, 0, 8, 0, 6, 4, 0, 1, 7, 4, 7, 6, 6, 7, 2, 5, 7, 8, 0, 1, 2, 3, 9, 5, 1, 7, 4, 1, 0, 6, 0, 8, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			3.289868133696452872944830333292050378438...
		

References

  • Marc Briane and Gilles Pagès, Théorie de l'Intégration, Vuibert, 2004, 3ème édition, exercice 12.15, p. 256.

Crossrefs

Cf. A024916 (partial sums of A000203).

Programs

Formula

Equals 3 + A145426.
Equals -Sum_{n>=1} Psi_2(n), where Psi_2 is the tetragamma function. - Istvan Mezo, Oct 25 2012
Equals Integral_{x=0..1} (log(x)/(x - 1))^2 dx. - Jean-François Alcover, Mar 21 2013
Equals Integral_{x=-oo..oo} x^2/sinh(x)^2 dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=0..oo} (log(x+1)/x)^2 dx (reference Briane and Pagès). - Bernard Schott, Feb 13 2022
Equals Sum_{n>=1} H(n) * binomial(2*n, n) / (n * 4^n), where H(n) is the n-th harmonic number. - Antonio Graciá Llorente, Apr 04 2025

Extensions

Extended by T. D. Noe, Oct 05 2011

A182448 Decimal expansion of Pi^2/15.

Original entry on oeis.org

6, 5, 7, 9, 7, 3, 6, 2, 6, 7, 3, 9, 2, 9, 0, 5, 7, 4, 5, 8, 8, 9, 6, 6, 0, 6, 6, 6, 5, 8, 4, 1, 0, 0, 7, 5, 6, 8, 7, 5, 7, 9, 9, 6, 0, 4, 8, 2, 7, 1, 9, 3, 7, 5, 0, 9, 4, 2, 2, 3, 2, 9, 1, 7, 4, 8, 0, 0, 2, 9, 8, 8, 1, 6, 1, 2, 8, 0, 3, 4, 9, 5, 3, 3, 4, 5, 1, 5, 6, 0, 2, 4, 7, 9, 0, 3, 4, 8, 2, 1, 2, 1, 6, 0, 1
Offset: 0

Views

Author

Mats Granvik, Apr 29 2012

Keywords

Examples

			0.65797362673929...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n + 0)^2 - 1/(n + 1)^2 + 1/(n + 2)^2 - 1/(n + 3)^2 - 4/(n + 4)^2 - 1/(n + 5)^2 + 1/(n + 6)^2 - 1/(n + 7)^2 + 1/(n + 8)^2 + 4/(n + 9)^2, {n, 1, Infinity, 10}], 90]][[1]]
    RealDigits[N[Sum[LiouvilleLambda[n]/n^2, {n, 1, Infinity}], 90]][[1]]
    RealDigits[Pi^2/15,10,120][[1]] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    Pi^2/15 \\ Michel Marcus, Oct 21 2014

Formula

See Mathematica code.
Equals Gamma(4)*zeta(4)/Pi^2 = zeta(4)/zeta(2) = A013662/A013661 = Product_{p prime} (p^2/(p^2+1)). - Stanislav Sykora, Oct 21 2014
Equals (1/10) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/3)^2 - 1/(n + 2/3)^2 ). - Peter Bala, Oct 31 2019
Equals Sum_{k>=1} A008836(k)/k^2. - Amiram Eldar, Jun 23 2020
Equals (1/10) * Sum_{k>=1} (5*t(k-1) + 3*t(k))/k^2, where t(k) = A010060(k) (Tóth, 2022). - Amiram Eldar, Feb 04 2024
Equals 3/5 + (1/5) * Sum_{n>=1} 1/(n^2*(n+1)^2). - Davide Rotondo, May 28 2025
Equals 1/A082020 = A164102/30 = A195055/5. - Hugo Pfoertner, May 28 2025

Extensions

Offset corrected and more terms added by Rick L. Shepherd, Jan 08 2014

A164109 Decimal expansion of Pi^4/3.

Original entry on oeis.org

3, 2, 4, 6, 9, 6, 9, 7, 0, 1, 1, 3, 3, 4, 1, 4, 5, 7, 4, 5, 4, 8, 0, 1, 1, 0, 8, 9, 6, 2, 3, 5, 0, 3, 7, 0, 8, 3, 2, 4, 2, 5, 2, 8, 5, 5, 7, 5, 6, 1, 8, 0, 7, 2, 3, 0, 4, 8, 9, 2, 8, 6, 4, 6, 3, 3, 2, 3, 6, 1, 8, 4, 8, 5, 6, 0, 9, 0, 6, 5, 3, 9, 6, 7, 0, 7, 2, 8, 9, 0, 7, 8, 2, 5, 0, 9, 9, 7, 5, 1, 6, 9, 8, 9, 7
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 8-dimensional unit sphere.

Examples

			32.4696970113341457454801108962350370832425285...
		

Crossrefs

Programs

Formula

Equals 8*A164108 = A019670*A091925 = A092425/3.
Pi^4/30 = Sum_{k>=1} H(k)*H(k+1)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 19 2025

A164103 Decimal expansion of 8*Pi^2/15.

Original entry on oeis.org

5, 2, 6, 3, 7, 8, 9, 0, 1, 3, 9, 1, 4, 3, 2, 4, 5, 9, 6, 7, 1, 1, 7, 2, 8, 5, 3, 3, 2, 6, 7, 2, 8, 0, 6, 0, 5, 5, 0, 0, 6, 3, 9, 6, 8, 3, 8, 6, 1, 7, 5, 5, 0, 0, 0, 7, 5, 3, 7, 8, 6, 3, 3, 3, 9, 8, 4, 0, 2, 3, 9, 0, 5, 2, 9, 0, 2, 4, 2, 7, 9, 6, 2, 6, 7, 6, 1, 2, 4, 8, 1, 9, 8, 3, 2, 2, 7, 8, 5, 6, 9, 7, 2, 8, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 5-dimensional unit sphere.
For all nonnegative integers n, let V_n be the volume of the n-dimensional unit sphere. If n != 5, then V_n < V_5, this constant (see A072345). - Rick L. Shepherd, Feb 23 2014

Examples

			Equals 5.2637890139143245967117285332672806...
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 67.

Programs

Formula

Equals A164104/5 = 4*A164102/15.

A164104 Decimal expansion of 8*Pi^2/3.

Original entry on oeis.org

2, 6, 3, 1, 8, 9, 4, 5, 0, 6, 9, 5, 7, 1, 6, 2, 2, 9, 8, 3, 5, 5, 8, 6, 4, 2, 6, 6, 6, 3, 3, 6, 4, 0, 3, 0, 2, 7, 5, 0, 3, 1, 9, 8, 4, 1, 9, 3, 0, 8, 7, 7, 5, 0, 0, 3, 7, 6, 8, 9, 3, 1, 6, 6, 9, 9, 2, 0, 1, 1, 9, 5, 2, 6, 4, 5, 1, 2, 1, 3, 9, 8, 1, 3, 3, 8, 0, 6, 2, 4, 0, 9, 9, 1, 6, 1, 3, 9, 2, 8, 4, 8, 6, 4, 0
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 5-dimensional unit sphere.

Examples

			Equals 26.318945069571622983558642666336...
		

Crossrefs

Programs

Formula

Equals 5*A164103 = 10 * A019699 * A019692.

Extensions

A-number in formula corrected by R. J. Mathar, Aug 12 2010

A164107 Decimal expansion of 16*Pi^3/15.

Original entry on oeis.org

3, 3, 0, 7, 3, 3, 6, 1, 7, 9, 2, 3, 1, 9, 8, 0, 8, 1, 8, 7, 1, 7, 4, 7, 3, 6, 0, 7, 1, 5, 7, 4, 8, 2, 1, 5, 4, 9, 0, 4, 0, 3, 0, 7, 8, 0, 3, 6, 1, 0, 7, 8, 1, 5, 4, 0, 4, 2, 0, 8, 4, 0, 6, 4, 4, 0, 6, 0, 1, 5, 4, 5, 7, 8, 6, 3, 0, 0, 8, 6, 4, 4, 0, 0, 7, 1, 1, 4, 7, 7, 6, 8, 1, 0, 9, 7, 4, 5, 2, 7, 2, 5, 6, 5, 4
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 7-dimensional unit sphere.

Examples

			Equals 33.07336179231980818717473607157482154904030780...
		

Crossrefs

Programs

A164081 Floor of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 259, 408, 512, 536, 481, 378, 264, 166, 94, 49, 24, 10, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the ceiling is A164083.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.
There are only 17 nonzero terms. - G. C. Greubel, Sep 10 2017

Examples

			Table of approximate real values before taking integer part.
========================
n (2*Pi)^n / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* G. C. Greubel, Sep 10 2017 *)
  • PARI
    for(n=1,100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 10 2017

Formula

a(n) = floor( (2*Pi)^n/(n-1)! ).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164082 Rounded value of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 260, 408, 513, 537, 482, 379, 264, 166, 95, 50, 24, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The floor of this real sequence is A164081, the ceiling is A164083.
The surface area of the n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/ A072479.
There are 18 nonzero terms in this sequence. - G. C. Greubel, Sep 11 2017

Examples

			Table of approximate real values before rounding up or down:
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164082 := proc(n) (2*Pi)^n/(n-1)! ; round(%) ; end: seq(A164082(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Round[(2*Pi)^n/(n - 1)!], {n, 1, 20}] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    for(n=1,20, print1(round((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = round(((2*Pi)^n)/(n-1)!).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009

A164083 Ceiling of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

7, 40, 125, 260, 409, 513, 537, 482, 379, 265, 167, 95, 50, 25, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The rounded values of this real sequence is A164082, the floor is A164081.
The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.

Examples

			Table of approximate real values before rounding up.
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(2Pi)^n/(n-1)!],{n,60}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = ceiling(((2*pi)^n)/(n-1)!).

Extensions

Definition corrected - R. J. Mathar, Sep 09 2009

A195056 Decimal expansion of Pi^2/7.

Original entry on oeis.org

1, 4, 0, 9, 9, 4, 3, 4, 8, 5, 8, 6, 9, 9, 0, 8, 3, 7, 4, 1, 1, 9, 2, 1, 2, 9, 9, 9, 9, 8, 2, 3, 0, 7, 3, 0, 5, 0, 4, 4, 8, 1, 4, 2, 0, 1, 0, 3, 4, 3, 9, 8, 6, 6, 0, 9, 1, 6, 1, 9, 2, 7, 6, 8, 0, 3, 1, 4, 3, 4, 9, 7, 4, 6, 3, 1, 3, 1, 5, 0, 3, 4, 7, 1, 4, 5, 3, 9, 0, 5, 7, 6, 7, 4, 0, 7, 8, 8, 9, 0, 2, 6, 0, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			1.409943485869908374119212999982307305045...
		

References

  • F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.

Crossrefs

Programs

  • Magma
    Pi(RealField(128))^2/7; // G. C. Greubel, Jun 02 2021
    
  • Mathematica
    RealDigits[Pi^2/7, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
  • PARI
    Pi^2/7 \\ Michel Marcus, Feb 04 2022
  • Sage
    numerical_approx(pi^2/7, digits=128) # G. C. Greubel, Jun 02 2021
    

Formula

Equals Sum_{k>=1} A000265(k)/k^3. - Amiram Eldar, Jun 27 2020
Equals Integral_{x=0..1} log(1+x+x^2+x^3+x^4+x^5+x^6)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022

Extensions

Extended by T. D. Noe, Oct 05 2011
Showing 1-10 of 17 results. Next