cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A167933 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406400000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 25 2019 *)
    coxG[{16, 190, -19, 20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 190*t^16 - 19*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
G.f.: (1+x)*(1-x^16)/(1 -20*x +209*x^16 -190*x^17). - G. C. Greubel, Apr 25 2019

A163503 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3359790, 67191600, 1343748210, 26873288400, 537432252000, 10747974763890, 214946090593500, 4298653734898110, 85967713492846500, 1719247052441058000, 34382796834223386990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    coxG[{5,190,-19}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
    CoefficientList[Series[(1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6), {x,0,20}], x] (* G. C. Greubel, Jul 26 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)) \\ G. C. Greubel, Jul 26 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
a(n) = 19*a(n-1)+19*a(n-2)+19*a(n-3)+19*a(n-4)-190*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163977 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67199790, 1343991600, 26879748210, 537593288400, 10751832252000, 215035974720000, 4300706088043890, 86013853634593500, 1720271710182898110, 34405326953812846500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[21, 420, 8400, 168000, 3360000, 67199790];; for n in [7..30] do a[n]:=19*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -190*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-20*t+209*t^6-190*t^7) )); // G. C. Greubel, Aug 11 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-20*t+209*t^6-190*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 11 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-20*t+209*t^6-190*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 24 2017 *)
    coxG[{6, 190, -19}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 11 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-20*t+209*t^6-190*t^7)) \\ G. C. Greubel, Aug 24 2017
    
  • Sage
    def A163977_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-20*t+209*t^6-190*t^7)).list()
    A163977_list(30) # G. C. Greubel, Aug 11 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
a(n) = -190*a(n-6) + 19*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165894 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10751999999790, 215039999991600, 4300799999748210, 86015999993288400, 1720319999832252000, 34406399995974720000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10751999999790];; for n in [7..30] do a[n]:=19*Sum([1..9], j-> a[n-j]) -190*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-20*t+209*t^10-190*t^11) )); // G. C. Greubel, Sep 24 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-20*t+209*t^10-190*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 24 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-20*t+209*t^10-190*t^11), {t, 0, 20}], t] (* G. C. Greubel, Apr 17 2016 *)
    coxG[{10, 190, -19}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 24 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-20*t+209*t^10-190*t^11)) \\ G. C. Greubel, Sep 24 2019
    
  • Sage
    def A165894_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-20*t+209*t^10-190*t^11)).list()
    A165894_list(30) # G. C. Greubel, Sep 24 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).

A166415 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215039999999790, 4300799999991600, 86015999999748210, 1720319999993288400, 34406399999832252000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+x)*(1-x^11)/(1-20*x+209*x^11-190*x^12) )); // G. C. Greubel, Jul 23 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-20*t+209*t^11-190*t^12), {t, 0, 50}], t] (* G. C. Greubel, May 13 2016; Jul 23 2024 *)
    coxG[{11, 190, -19, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 23 2024 *)
  • SageMath
    def A166415_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^11)/(1-20*x+209*x^11-190*x^12) ).list()
    A166415_list(30) # G. C. Greubel, Jul 23 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 19*Sum_{j=1..10} a(n-j) - 190*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 20*x + 209*x^11 - 190*x^12). (End)

A166603 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300799999999790, 86015999999991600, 1720319999999748210, 34406399999993288400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x)*(1-x^12)/(1-20*x+209*x^12-190*x^13) )); // G. C. Greubel, Jan 21 2025
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-20*t+209*t^12-190*t^13), {t,0,50}], t] (* G. C. Greubel, May 18 2016; Jan 21 2025 *)
    coxG[{12,190,-19}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 21 2025 *)
  • SageMath
    def A166603_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-20*x+209*x^12-190*x^13) ).list()
    A166603_list(50) # G. C. Greubel, Jan 21 2025

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^12 - 19*t^11 - 19*t^10 - 19*t^9 -19*t^8 -19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t +1).
From G. C. Greubel, Jan 21 2025: (Start)
a(n) = 19*Sum_{j=1..11} a(n-j) - 190*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 20*x + 209*x^12 - 190*x^13). (End)

A167074 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86015999999999790, 1720319999999991600, 34406399999999748210
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 31 2016 *)
    coxG[{13,190,-19}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 20 2016 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).

A167150 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720319999999999790, 34406399999999991600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (190*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 04 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).

A167681 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406399999999999790
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 19 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
Showing 1-10 of 49 results. Next