cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A193580 Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0

Views

Author

Andrew Woods, Aug 27 2011

Keywords

Comments

Rows 2n and 2n-1 both contain 1 + n^2 entries. Cf. A008794.
Row n sums to A063443(n+1).
Number of walks of length n-1 on a graph in which each node represents a 11-avoiding n-bit binary sequence B and adjacency of B and B' is determined by B'&(B|(B<<1)|(B>>1))=0 and the total number of nonzero bits in the walk is k.
Row n gives the coefficients of the independence polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			The table begins with T(0,0):
  1;
  1,   1;
  1,   4;
  1,   9,  16,   8,   1;
  1,  16,  78, 140,  79;
  ...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
		

References

  • Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.

Crossrefs

Diagonal: A201513.
Cf. A179403, etc., for extension to toroidal boards.
Cf. A166540, etc., for extension into three dimensions.
Cf. A098487 for a clipped version.
Row n sums to A063443(n+1).

Formula

T(n, 0) = 1;
T(n, 1) = n^2;
T(2n-1, n^2-1) = n^3;
T(2n-1, n^2) = 1.

A201513 Number of ways to place n nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 0, 8, 79, 1974, 62266, 2484382, 119138166, 6655170642, 423677826986, 30242576462856, 2390359529372724, 207127434998494421, 19516867860507198208, 1986288643031862123264, 217094567491104327256049, 25357029929230564723578520, 3151672341378566296926684684
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2011

Keywords

Crossrefs

Formula

Asymptotics (Vaclav Kotesovec, Nov 29 2011): n^(2n)/n!*exp(-9/2).

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2017

A189889 Maximum number of nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 4, 5, 9, 10, 16, 18, 25, 27, 36, 39, 49, 52, 64, 68, 81, 85, 100, 105, 121, 126, 144, 150, 169, 175, 196, 203, 225, 232, 256, 264, 289, 297, 324, 333, 361, 370, 400, 410, 441, 451, 484, 495, 529, 540, 576, 588, 625
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2011

Keywords

Comments

a(n) is the independence number of the Cayley graph on the group Z_n X Z_n with generators (+-e_1, +-e_2)<>(0,0) where e_i is in {0,1} for i=1,2. - Miquel A. Fiol, Aug 07 2024
For n>=4 a(n) is the maximum number of edges of an n-cycle graph with chords not containing any triangle with some edges of the cycle. - Miquel A. Fiol, Sep 20 2024

References

  • John Watkins, Across the Board: The Mathematics of Chessboard Problems (2004), Theorem 11.1, p.194.

Crossrefs

Programs

  • Magma
    [1] cat [Floor(n*Floor(n/2)/2): n in [2..50]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189889:=n->`if`(n=1,1,floor(n*floor(n/2)/2)); seq(A189889(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
  • Mathematica
    Table[If[n==1,1,Floor[(n*Floor[n/2])/2]],{n,1,50}]
    CoefficientList[Series[(- x^7 + x^6 + x^5 + 3 * x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
    Join[{1},LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,4,5,9,10,16},50]] (* Harvey P. Dale, Aug 07 2013 *)
  • PARI
    Vec(x*(-x^7 + x^6 + x^5 + 3*x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1) + O(x^51)) \\ Indranil Ghosh, Mar 09 2017
    
  • PARI
    a(n) = if(n==1, 1, floor((n*floor(n/2))/2)); \\ Indranil Ghosh, Mar 09 2017
    
  • Python
    def A189889(n): return 1 if n==1 else (n*(n/2))/2 # Indranil Ghosh, Mar 09 2017
    

Formula

a(n) = floor((n*floor(n/2))/2), n > 1 (Watkins and Ricci, 2004).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
G.f.: x*(-x^7 +x^6 +x^5 +3*x^3 -x^2 +1) / (-x^7 +x^6 +x^5 -x^4+ x^3 -x^2 -x +1).

A279115 Number of non-equivalent ways to place 6 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 143, 7855, 153311, 1505465, 9729830, 47235703, 186615092, 630338668, 1882894541, 5092130575, 12686490993, 29498296651, 64664954532, 134715649055, 268438970166, 514318521438, 951646716171, 1706721390223, 2976056379875, 5058962536429, 8402677784738, 13663807273607
Offset: 1

Views

Author

Heinrich Ludwig, Dec 09 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A172158.

Examples

			There are 143 non-equivalent ways to place 6 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   K...K
   .....
   K...K
		

Crossrefs

Cf. A172158, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279116 (7 kings), A279117, A236679.

Programs

  • PARI
    concat(vector(4), Vec(x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7) + O(x^30))) \\ Colin Barker, Dec 09 2016

Formula

a(n) = (n^12 - 135*n^10 + 180*n^9 + 7465*n^8 - 18840*n^7 - 202468*n^6 + 749880*n^5 + 2446764*n^4 - 13439400*n^3 - 3570352*n^2 + 89413920*n - 107694720 + IF(MOD(n, 2) = 1, 122*n^6 - 1020*n^5 + 1955*n^4 + 840*n^3 + 5753*n^2 - 42840*n + 132975))/5760 for n>=5.
a(n) = 6*a(n-1) - 8*a(n-2) - 22*a(n-3) + 69*a(n-4) - 8*a(n-5) - 176*a(n-6) + 168*a(n-7) + 182*a(n-8) - 364*a(n-9) + 364*a(n-11) - 182*a(n-12) - 168*a(n-13) + 176*a(n-14) + 8*a(n-15) - 69*a(n-16) + 22*a(n-17) + 8*a(n-18) - 6*a(n-19) + a(n-20) for n>=25.
G.f.: x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7). - Colin Barker, Dec 09 2016

A194788 Number of ways to place 7 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 242, 51504, 2484382, 44601420, 450193818, 3112919712, 16471667554, 71393226972, 265069706646, 869583076752, 2577681275622, 7020477731884, 17794428237522, 42397762374912, 95726217156906, 206149749502012, 425731784898894, 846919172059632
Offset: 1

Views

Author

Andrew Woods, Sep 02 2011

Keywords

Crossrefs

Formula

a(n) = (n^14 - 189n^12 + 252n^11 + 15211n^10 - 38640n^9 - 649215n^8 + 2408700n^7 + 14771764n^6 - 75856200n^5 - 144099396n^4 + 1198867488n^3 - 255900576n^2 - 7543005120n + 10617929280)/5040, n>=6. - Andrew Woods, Sep 02 2011
G.f.: 2*x^5*(1930*x^15 - 20052*x^14 + 87663*x^13 - 265681*x^12 + 816798*x^11 - 2117376*x^10 + 2865281*x^9 + 557737*x^8 - 6577818*x^7 + 3848604*x^6 + 8828017*x^5 - 9464319*x^4 - 6316750*x^3 - 868616*x^2 - 23937*x - 121)/ (x-1)^15. - Vaclav Kotesovec, Nov 06 2011

A286441 Number of ways to tile an n X n X n triangular area with six 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-24) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 219, 15160, 369787, 4366982, 32450843, 175628996, 755759531, 2734928266, 8643796747, 24503068784, 63522668395, 152816062222, 345005930315, 737473609532, 1503178571195, 2938515130514, 5535661080283, 10089397100584, 17851538034587, 30750030827926, 51694565135803
Offset: 5

Views

Author

Heinrich Ludwig, May 12 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A172158.

Examples

			There are 219 ways of tiling a triangular area of side 6 with 6 tiles of side 2 and an appropriate number (= 12) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec( x^6*(219 + 12313*x + 189789*x^2 + 679597*x^3 + 344288*x^4 - 808902*x^5 + 54074*x^6 + 289970*x^7 - 51453*x^8 - 71891*x^9 + 27785*x^10 - 255*x^11 + 98*x^12 - 352*x^13) / (1 - x)^13 + O(x^60))) \\ Colin Barker, May 13 2017

Formula

a(n) = (n^12 - 18*n^11 + 3*n^10 + 1710*n^9 - 7175*n^8 - 60078*n^7 + 401649*n^6 + 884466*n^5 - 9521846*n^4 - 3238224*n^3 + 107453448*n^2 - 25651296*n - 483140880)/720 for n >= 7.
G.f.: x^6*(219 + 12313*x + 189789*x^2 + 679597*x^3 + 344288*x^4 - 808902*x^5 + 54074*x^6 + 289970*x^7 - 51453*x^8 - 71891*x^9 + 27785*x^10 - 255*x^11 + 98*x^12 - 352*x^13) / (1 - x)^13. - Colin Barker, May 13 2017

A179426 Number of ways to place 6 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 10596, 486668, 7063520, 55345356, 299491100, 1263811604, 4455716184, 13701863604, 37823872044, 95648273100, 224887404416, 497181121100, 1042609380588, 2088337713332, 4017815773400, 7459198321428, 13414493857116, 23444476061772, 39928736913120, 66425550447500, 108162598959740, 172697249542932, 270794133842456, 417578468928308, 634036069773900
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4 x^5 (426 x^13 - 4263 x^12 + 22311 x^11 - 82449 x^10 + 220918 x^9 - 391803 x^8 + 369356 x^7 + 10716 x^6 - 382230 x^5 + 163719 x^4 + 387689 x^3 - 390831 x^2 - 87230 x - 2649) / (x - 1)^13, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

a(n) = 1/720*n^2*(n^10 -135*n^8 +7525*n^6 -217665*n^4 +3289354*n^2 -20949480), n>=7.
G.f.: 4*x^6*(426*x^13 - 4263*x^12 + 22311*x^11 - 82449*x^10 + 220918*x^9 - 391803*x^8 + 369356*x^7 + 10716*x^6 - 382230*x^5 + 163719*x^4 + 387689*x^3 - 390831*x^2 - 87230*x - 2649)/(x-1)^13.

A201369 Number of ways to place 8 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 27, 21792, 3324193, 119138166, 1979541332, 20142680752, 145977165234, 824771174978, 3850985758339, 15461577137802, 54912339921707, 176153338628674, 518569625849418, 1418340918023792, 3639736652346172, 8833161922947702, 20405252721413369
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 30 2011

Keywords

Crossrefs

Formula

Explicit formula (Vaclav Kotesovec, after values computed by Andrew Woods, Nov 30 2011): (n^16 - 252*n^14 + 336*n^13 + 27762*n^12 - 70896*n^11 - 1699656*n^10 + 6330240*n^9 + 60677169*n^8 - 304864560*n^7 - 1181816748*n^6 + 8314366704*n^5 + 8495481308*n^4 - 121101870624*n^3 + 74007948336*n^2 + 730891869120*n - 1180990460160)/40320, n>=7.
G.f.: -x^5*(14882*x^18 - 180784*x^17 + 1061244*x^16 - 4500406*x^15 + 15038864*x^14 - 34328850*x^13 + 40903004*x^12 - 8667835*x^11 + 23857551*x^10 - 260744627*x^9 + 545801251*x^8 - 276255996*x^7 - 467674682*x^6 + 484515328*x^5 + 391528458*x^4 + 65572237*x^3 + 2957401*x^2 + 21333*x + 27)/(x-1)^17.

A172205 Number of ways to place 6 nonattacking kings on a 6 X n board.

Original entry on oeis.org

0, 0, 16, 408, 8544, 62266, 291908, 1021254, 2916232, 7179314, 15790572, 31795390, 59638832, 105546666, 177953044, 287974838, 449932632, 681918370, 1006409660, 1450930734, 2048760064, 2839684634, 3870800868, 5197362214, 6883673384
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2 x^2 (475 x^8 - 1015 x^7 + 4398 x^6 + 194 x^5 + 10875 x^4 + 5233 x^3 + 3012 x^2 + 148 x + 8) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = 2*(162n^6-3240n^5+29160n^4-151830n^3+483798n^2-895085n+749335)/5, n>=5.
G.f.: -2*x^3*(475*x^8-1015*x^7+4398*x^6+194*x^5+10875*x^4+5233*x^3+3012*x^2 +148*x+8)/(x-1)^7. - Vaclav Kotesovec, Mar 24 2010

A201771 Number of ways to place 9 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 1, 3600, 2882737, 229095676, 6655170642, 103395053720, 1051588999820, 7878155295948, 46838274976147, 232322652402464, 995789500001315, 3784235129731708, 12999197522073908, 40969826999523768, 119876498636101786, 328726265508168780, 851369417500529061
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 04 2011

Keywords

Crossrefs

Formula

Explicit formula (Vaclav Kotesovec, after values computed by Andrew Woods, Dec 04 2011): n^18/362880 - n^16/1120 + n^15/840 + 1559*n^14/12096 - 119*n^13/360 - 7681*n^12/720 + 479*n^11/12 + 9383677*n^10/17280 - 195031*n^9/72 - 24176483*n^8/1440 + 4447749*n^7/40 + 5032857271*n^6/18144 - 495178813*n^5/180 - 2551293629*n^4/2520 + 1588223225*n^3/42 - 11469403819*n^2/315 - 664490248*n/3 + 405670140, n>=8.
G.f.: x^5*(54764*x^21 - 805588*x^20 + 6061268*x^19 - 31485512*x^18 + 117971558*x^17 - 312791986*x^16 + 620038858*x^15 - 1193322246*x^14 + 2685590901*x^13 - 4918483903*x^12 + 3824558880*x^11 + 5110355848*x^10 - 13987162841*x^9 + 5213745395*x^8 + 15789867458*x^7 - 14255103822*x^6 - 13342741937*x^5 - 2791816301*x^4 - 174938304*x^3 - 2814508*x^2 - 3581*x - 1)/(x-1)^19.
Showing 1-10 of 12 results. Next