cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A010785 Repdigit numbers, or numbers whose digits are all equal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 11111, 22222, 33333, 44444, 55555, 66666, 77777, 88888, 99999, 111111, 222222, 333333, 444444, 555555, 666666
Offset: 0

Views

Author

Keywords

Comments

Complement of A139819. - David Wasserman, May 21 2008
Subsequence of A134336 and of A178403. - Reinhard Zumkeller, May 27 2010
Subsequence of A193460. - Reinhard Zumkeller, Jul 26 2011
Intersection of A009994 and A009996. - David F. Marrs, Sep 29 2018
Beiler (1964) called these numbers "monodigit numbers". The term "repdigit numbers" was used by Trigg (1974). - Amiram Eldar, Jan 21 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, p. 83.

Crossrefs

Programs

  • Haskell
    a010785 n = a010785_list !! n
    a010785_list = 0 : r [1..9] where
       r (x:xs) = x : r (xs ++ [10*x + x `mod` 10])
    -- Reinhard Zumkeller, Jul 26 2011
    
  • Magma
    [(n-9*Floor((n-1)/9))*(10^Floor((n+8)/9)-1)/9: n in [0..50]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A010785 := proc(n)
        (n-9*floor(((n-1)/9)))*((10^(floor(((n+8)/9)))-1)/9) ;
    end proc:
    seq(A010785(n), n = 0 .. 100); # Robert Israel, Nov 09 2014
  • Mathematica
    fQ[n_]:=Module[{id=IntegerDigits[n]}, Length[Union[id]]==1]; Select[Range[0,10000], fQ] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
    Union[FromDigits/@Flatten[Table[PadRight[{},i,n],{n,0,9},{i,6}],1]] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,-10}, {0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88},40] (* Harvey P. Dale, Dec 28 2011 *)
    Union@ Flatten@ Table[k (10^n - 1)/9, {k, 0, 9}, {n, 6}] (* Robert G. Wilson v, Oct 09 2014 *)
    Table[(n - 9 Floor[(n-1)/9]) (10^Floor[(n+8)/9] - 1)/9, {n, 0, 50}] (* José de Jesús Camacho Medina, Nov 06 2014 *)
  • PARI
    a(n)=10^((n+8)\9)\9*((n-1)%9+1) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    nxt(n,t=n%10)=if(t<9,n*(t+1),n*10+9)\t \\ Yields the term a(k+1) following a given term a(k)=n. M. F. Hasler, Jun 24 2016
    
  • PARI
    is(n)={1==#Set(digits(n))}
    inv(n) = 9*#Str(n) + n%10 - 9 \\ David A. Corneth, Jun 24 2016
    
  • Python
    def a(n): return 0 if n == 0 else int(str((n-1)%9+1)*((n-1)//9+1))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Dec 29 2021
    
  • Python
    print([0]+[int(d*r) for r in range(1, 7) for d in "123456789"]) # Michael S. Branicky, Dec 29 2021
    
  • Python
    # without string operations
    def a(n): return 0 if n == 0 else (10**((n-1)//9+1)-1)//9*((n-1)%9+1)
    print([a(n) for n in range(55)]) # Michael S. Branicky, Nov 03 2023

Formula

A037904(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2007
A178401(a(n)) > 0. - Reinhard Zumkeller, May 27 2010
From Reinhard Zumkeller, Jul 26 2011: (Start)
For n > 0: A193459(a(n)) = A000005(a(n)).
for n > 10: a(n) mod 10 = floor(a(n)/10) mod 10.
A010879(n) = A010879(A059995(n)). (End)
A202022(a(n)) = 1. - Reinhard Zumkeller, Dec 09 2011
a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=6, a(7)=7, a(8)=8, a(9)=9, a(10)=11, a(11)=22, a(12)=33, a(13)=44, a(14)=55, a(15)=66, a(16)=77, a(17)=88, a(n) = 11*a(n-9) - 10*a(n-18). - Harvey P. Dale, Dec 28 2011
A151949(a(n)) = 0; A180410(a(n)) = A227362(a(n)). - Reinhard Zumkeller, Jul 09 2013
a(n) = (n - 9*floor((n-1)/9))*(10^floor((n+8)/9) - 1)/9. - José de Jesús Camacho Medina, Nov 06 2014
G.f.: x*(1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/((1-x^9)*(1-10*x^9)). - Robert Israel, Nov 09 2014
A047842(a(n)) = A244112(a(n)). - Reinhard Zumkeller, Nov 11 2014
Sum_{n>=1} 1/a(n) = (7129/2520) * A065444 = 3.11446261209177581335... - Amiram Eldar, Jan 21 2022

Extensions

Name clarified by Jon E. Schoenfield, Nov 10 2023

A050278 Pandigital numbers: numbers containing the digits 0-9. Version 1: each digit appears exactly once.

Original entry on oeis.org

1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, 1023457968, 1023457986, 1023458679, 1023458697, 1023458769, 1023458796, 1023458967, 1023458976, 1023459678, 1023459687, 1023459768
Offset: 1

Views

Author

Eric W. Weisstein, Dec 11 1999

Keywords

Comments

This is a finite sequence with 9*9! = 3265920 terms: a(9*9!) = 9876543210.
A171102 is the infinite version, where each digit must appear at least once.
More precisely, this is exactly the subset of the first 9*9! terms of A171102. - M. F. Hasler, Jan 05 2020
Subsequence of A134336 and of A178403; A178401(a(n)) = 1. - Reinhard Zumkeller, May 27 2010
Smallest prime factors: A178775(n) = A020639(a(n)). - Reinhard Zumkeller, Jun 11 2010
A178788(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2010
All these numbers are composite because the sum of the digits, 45, is divisible by 9. - T. D. Noe, Nov 09 2011
This is the 10th row of the array T(k,n) = n-th number in which the number of distinct base-10 digits is k. A031969 is the 4th row. A220063 is the 5th row. A220076 is the 6th row. A218019 is the 7th row. A219743 is the 8th row. - Jonathan Vos Post, Dec 05 2012
From Hieronymus Fischer, Feb 13 2013: (Start)
The sum of all terms is 9!*49444444440 = 17942399998387200.
General formula for the sum of all terms of the finite sequence of the corresponding base-p pandigital numbers with p places: sum = ((p^2 - p - 1)*(p^p - 1) + p - 1)*(p-2)!/2.
General formula for the sum of all terms (interpreted as decimal permutational numbers with exactly d+1 different digits from the range 0..d < 10): sum = (d+1)!*((10d - 1)*10^d - d + 1)/18, d > 1.
(End)

Crossrefs

Programs

  • Mathematica
    Select[ FromDigits@# & /@ Permutations[ Range[0, 9]], # > 10^9 &, 20] (* Robert G. Wilson v, May 30 2010, Jan 17 2012 *)
  • PARI
    A050278(n)={ my(b=vector(9,k,1+(n+9!-1)%(k+1)!\k!), t=b[9]-1, d=vector(9,i,i+(i>t)-1)); for(i=1,8, t=10*t+d[b[9-i]]; d=vecextract(d,Str("^"b[9-i]))); t*10+d[1]} \\ M. F. Hasler, Jan 15 2012
    
  • PARI
    is_A050278(n)={ 9<#vecsort(Vecsmall(Str(n)),,8) & n<1e10 } /* assuming that n is a nonnegative integer */ /* M. F. Hasler, Jan 10 2012 */
    
  • PARI
    a(n)=my(d=numtoperm(10,n+9!-1));sum(i=1,#d,(d[i]-1)*10^(#d-i)) \\ David A. Corneth, Jun 01 2014
    
  • Python
    from itertools import permutations
    A050278_list = [int(''.join(d)) for d in permutations('0123456789',10) if d[0] != '0'] # Chai Wah Wu, May 25 2015

Formula

A050278 = 9*A171571. - M. F. Hasler, Jan 12 2012
A050278(n) = A171102(n) for n <= 9*9!.

Extensions

Edited by N. J. A. Sloane, Sep 25 2010 to clarify that this is a finite sequence

A171102 Pandigital numbers: numbers containing the digits 0-9. Version 2: each digit appears at least once.

Original entry on oeis.org

1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, 1023457968, 1023457986, 1023458679, 1023458697, 1023458769, 1023458796, 1023458967, 1023458976
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2010

Keywords

Comments

This is the infinite version. See A050278 for the finite version.
The first 9*9!=3265920 terms of this sequence are permutations of the digits 0-9 with a(9*9!)=9876543210 (see Version 1, A050278). - Jeremy Gardiner, May 29 2010
Subsequence of A134336 and of A178403; A178401(a(n))>0. - Reinhard Zumkeller, May 27 2010
Smallest prime factors: A178775(n) = A020639(a(n)). - Reinhard Zumkeller, Jun 11 2010
A178788(a(n)) = 1, for n <= 9*9!, else A178788(a(n)) = 0. - Reinhard Zumkeller, Jun 30 2010 [corrected by Hieronymus Fischer, Feb 02 2013]
A230959(a(n)) = 0. - Reinhard Zumkeller, Nov 02 2013
The first term of the sequence absent in A050278 is a(3265921) = 10123456789. Also, the first prime is a(3306373) = 10123457689 = A050288(1). - Zak Seidov, Sep 23 2015
Almost all numbers are in this sequence, in the sense that it has asymptotic density equal to 1. Indeed, the fraction of n-digit numbers which don't have a given digit d is roughly 0.9^n (not exactly because the first digit is chosen among {1..9}) which tends to zero as n -> oo. - M. F. Hasler, Jan 05 2020

Crossrefs

Subsequence of A253172.

Programs

  • Mathematica
    Take[ Select[ FromDigits@# & /@ Permutations[ Range[0, 9], {10}], # > 10^9 &], 20] (* Robert G. Wilson v, May 30 2010 *)
  • PARI
    is_A171102(n)=9<#vecsort(Vecsmall(Str(n)),,8) /* assuming that n is a nonnegative integer. In PARI/GP V.2.4 - 2.9 this is faster than other possibilities involving Set(),Vec(),eval() or digits() */ \\ M. F. Hasler, Jan 10 2012, Sep 19 2017
    
  • PARI
    A171102=A050278 /*** valid for n <= 9*9! ***/ \\ M. F. Hasler, Jan 10 2012

Formula

a(n) = 1011111111 + A178478(n) for n = 1,...,8!. - M. F. Hasler, Jan 10 2012
A171102(n) = A050278(n) for n <= 9*9!.

A004427 Arithmetic mean of digits of n (rounded up).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 1, 1, 1, 2, 2, 2, 3, 3
Offset: 0

Views

Author

Keywords

Comments

a(100)=1 is the first value that differs from the variant "... rounded to the nearest integer". - M. F. Hasler, May 10 2015

Crossrefs

Programs

  • Mathematica
    Ceiling[Mean[IntegerDigits[#]]]&/@Range[0,110] (* Harvey P. Dale, Aug 29 2014 *)
  • PARI
    A004427(n)=ceil(sum(i=1, #n=digits(n), n[i])/#n) \\ ...Vecsmall(Str(n))...-48 is a little faster. \\ M. F. Hasler, May 10 2015

Formula

From Reinhard Zumkeller, May 27 2010: (Start)
a(n) = ceiling(A007953(n)/A055642(n)); a(A000040(n)) = A074462(n);
A004426(n) <= a(n) with equality for n in A061383;
a(A178361(n)) = 1; a(A178362(n)) = 2; a(A178363(n)) = 3; a(A178364(n)) = 4; a(A178365(n)) = 5; a(A178366(n)) = 6; a(A178367(n)) = 7; a(A178368(n)) = 8; a(A178369(n)) = 9. (End)

A032981 Positive numbers with the property that all pairs of consecutive base-10 digits differ by 0 or 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99, 100, 101, 110, 111, 112, 121, 122, 123, 210, 211, 212, 221, 222, 223, 232, 233, 234, 321, 322, 323, 332, 333, 334, 343, 344, 345
Offset: 1

Views

Author

Keywords

Comments

a(n) = A178403(n+1) for n < 38. - Reinhard Zumkeller, May 27 2010

Crossrefs

Cf. A068148 (primes).

Programs

  • Haskell
    a032981 n = a032981_list !! (n-1)
    a032981_list = map read $ filter f $ map show [1..] :: [Int] where
       f ps = all (`elem` neighbours) $ zipWith ((. return) . (:)) ps (tail ps)
       neighbours = "09" : "90" : zipWith ((. return) . (:))
          (digs ++ tail digs ++ init digs) (digs ++ init digs ++ tail digs)
       digs = "0123456789"
    -- Reinhard Zumkeller, Feb 14 2015
  • Mathematica
    okQ[n_]:=Max[Abs[Last[#]-First[#]]&/@Partition[IntegerDigits[n],2,1]]<2
    Select[Range[350],okQ]  (* Harvey P. Dale, Feb 14 2011 *)

A134336 Nonnegative integers n containing each digit between n's smallest and largest decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99, 100, 101, 102, 110, 111, 112, 120, 121, 122, 123, 132, 201, 210, 211, 212, 213, 221, 222, 223, 231, 232, 233, 234, 243, 312, 321, 322, 323
Offset: 1

Views

Author

Rick L. Shepherd, Oct 21 2007

Keywords

Comments

A032981 is a subsequence; the term 102 is the first positive integer not also in A032981. A171102 (pandigital numbers) and A033075 are subsequences. Union of A010785 (repdigits) and A108965.
a(n) = A178403(n) for n < 48. - Reinhard Zumkeller, May 27 2010
Equivalently, numbers with the property that the set of its decimal digits is a set of consecutive numbers. - Tanya Khovanova and Charles R Greathouse IV, Jul 31 2012

Crossrefs

Cf. A032981, A050278, A033075 (a subsequence), A010785, A108965.

Programs

  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n))),,8));for(i=2,#v,if(v[i]!=1+v[i-1],return(0)));1 \\ Tanya Khovanova and Charles R Greathouse IV, Jul 31 2012
    
  • PARI
    is_A134336(n)={vecmax(n=Set(digits(n)))-vecmin(n)==#n-1} \\ M. F. Hasler, Dec 24 2014
    
  • Python
    def ok(n): d = sorted(set(map(int, str(n)))); return d[-1]-d[0]+1 == len(d)
    print([k for k in range(324) if ok(k)]) # Michael S. Branicky, Dec 12 2023

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 09 2011

Extensions

Edited by N. J. A. Sloane, Aug 06 2012

A178401 Number of times the rounded up arithmetic mean of digits of n occurs in n, cf. A004427.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

a(A178402(n)) = 0; a(A050278(n)) = 1; a(A178403(n)) > 0;
a(A010785(n)) > 0; a(A178358(n)) > 0; a(A178359(n)) > 0.

A178358 Rounded up arithmetic mean of digits of n prepended to n, cf. A004427.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 111, 212, 213, 314, 315, 416, 417, 518, 519, 120, 221, 222, 323, 324, 425, 426, 527, 528, 629, 230, 231, 332, 333, 434, 435, 536, 537, 638, 639, 240, 341, 342, 443, 444, 545, 546, 647, 648, 749, 350, 351, 452, 453
Offset: 0

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A000030(a(n)) = A004427(a(n)) = A004427(n);
a(A178359(n)) = A178359(a(n));
subsequence of A178403.

Examples

			n=8379 --> A004427(n) = ceiling((8+3+7+9)/4) = 7
--> a(8379) = 7*10^4 + 8379 = 78379.
		

Programs

  • Haskell
    a178358 n = read $ show (a004427 n) ++ show n :: Integer
    -- Reinhard Zumkeller, Mar 17 2014
  • Mathematica
    Table[Ceiling[Mean[IntegerDigits[n]]]*10^IntegerLength[n]+n,{n,0,100}] (* Harvey P. Dale, Apr 21 2019 *)

Formula

a(n) = A004427(n)*A011557(A055642(n)) + n.

A178359 Rounded up arithmetic mean of digits of n appended to n, cf. A004427.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 122, 132, 143, 153, 164, 174, 185, 195, 201, 212, 222, 233, 243, 254, 264, 275, 285, 296, 302, 312, 323, 333, 344, 354, 365, 375, 386, 396, 402, 413, 423, 434, 444, 455, 465, 476, 486, 497, 503, 513, 524, 534
Offset: 0

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A010879(a(n)) = A004427(a(n)) = A004427(n);
a(A178358(n)) = A178358(a(n));
subsequence of A178403.

Examples

			For n=8379: A004427(n) = ceiling((8+3+7+9)/4) = 7; so a(8379) = 10*8379 + 7 = 83797.
		

Programs

  • Mathematica
    amd[n_]:=Module[{m=Ceiling[Mean[IntegerDigits[n]]]},n*10^IntegerLength[ m]+ m]; Array[amd,60,0] (* Harvey P. Dale, Aug 12 2015 *)

Formula

a(n) = A008592(n) + A004427(n).

A178402 Numbers not containing the rounded up arithmetic mean of their digits, cf. A004427.

Original entry on oeis.org

13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 64, 68, 69, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96, 97, 103, 104, 105, 106
Offset: 1

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A178401(a(n)) = 0; complement of A178403.
Showing 1-10 of 11 results. Next