cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.

Original entry on oeis.org

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
Primes which are the average of three consecutive primes. - Peter Schorn, Apr 30 2025

Examples

			5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.

Programs

  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = filter ((== 1) . a010051) a075540_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = h a000040_list where
       h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
    p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
    Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
  • PARI
    betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(prime(x)",")) ) } \\ Cino Hilliard, Jan 25 2005
    
  • PARI
    forprime(p=1,999, p-precprime(n-1)==nextprime(p+1)-p && print1(p",")) \\ M. F. Hasler, Jun 01 2013
    
  • PARI
    is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    from sympy import nextprime; p, q, r = 2, 3, 5
    while q < 6000:
        if 2*q == p + r: print(q, end = ", ")
        p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021

Formula

2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024

Extensions

Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011

A051635 Weak primes: prime(n) < (prime(n-1) + prime(n+1))/2.

Original entry on oeis.org

3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 167, 181, 193, 199, 229, 233, 241, 271, 283, 293, 313, 317, 337, 349, 353, 359, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523, 547, 571, 577, 601, 619, 643, 647
Offset: 1

Views

Author

Felice Russo, Nov 15 1999

Keywords

Comments

Primes prime(n) such that prime(n)-prime(n-1) < prime(n+1)-prime(n). - Juri-Stepan Gerasimov, Jan 01 2011
a(n) < A051634(n). a(n) ~ 2*prime(n). - Thomas Ordowski, Jul 25 2012
The inequality above is false. The least counterexample is a(19799) = 496291 > A051634(19799) = 496283. - Amiram Eldar, Nov 26 2023
Erdős called a weak prime an "early prime." He conjectured that there are infinitely many consecutive pairs of early primes, and offered $100 for a proof and $25000 for a disproof (Kuperberg 1992). See A229832 for a stronger conjecture. - Jonathan Sondow, Oct 13 2013

Examples

			7 belongs to the sequence because 7 < (5+11)/2.
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000

Crossrefs

Subsequence of A178943.
Cf. A225495 (multiplicative closure).

Programs

  • Haskell
    a051635 n = a051635_list !! (n-1)
    a051635_list = g a000040_list where
       g (p:qs@(q:r:ps)) = if 2 * q < (p + r) then q : g qs else g qs
    -- Reinhard Zumkeller, May 09 2013
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10^2]], 3, 1], #[[2]]<(#[[1]]+#[[3]])/2 &]][[2]] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    p=Prime[Range[200]]; p[[Flatten[1+Position[Sign[Differences[p, 2]], 1]]]]
  • PARI
    p=2;q=3;forprime(r=5,1e3,if(2*qCharles R Greathouse IV, Jul 25 2011
    

Formula

a(1) = A229832(1). - Jonathan Sondow, Oct 13 2013
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/2. - Alain Rocchelli, Mar 17 2024

Extensions

More terms from James Sellers

A051634 Strong primes: prime(k) > (prime(k-1) + prime(k+1))/2.

Original entry on oeis.org

11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541, 557, 569, 587, 599, 613, 617, 631, 641, 659, 673, 701
Offset: 1

Views

Author

Felice Russo, Nov 15 1999

Keywords

Comments

Prime(k) such that prime(k) - prime(k-1) > prime(k+1) - prime(k). - Juri-Stepan Gerasimov, Jan 01 2011
a(n) > A051635(n). - Thomas Ordowski, Jul 25 2012
The inequality above is false. The least counterexample is a(19799) = 496283 < A051635(19799) = 496291. - Amiram Eldar, Nov 26 2023
Conjecture: Limit_{N->oo} Sum_{n=1..N} (NextPrime(a(n))-a(n)) / a(N) = 1/4. [A heuristic proof is available at www.primepuzzles.net - Conjecture 91] - Alain Rocchelli, Nov 14 2022
A131499 is a subsequence. - Davide Rotondo, Oct 16 2023

Examples

			11 belongs to the sequence because 11 > (7 + 13)/2.
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.

Crossrefs

Subsequence of A178943.
Cf. A225493 (multiplicative closure), A131499 (subsequence).

Programs

  • Haskell
    a051634 n = a051634_list !! (n-1)
    a051634_list = f a000040_list where
       f (p:qs@(q:r:ps)) = if 2 * q > (p + r) then q : f qs else f qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Maple
    q:= n-> isprime(n) and 2*n>prevprime(n)+nextprime(n):
    select(q, [$3..1000])[];  # Alois P. Heinz, Jun 21 2023
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10^2]], 3, 1], #[[2]]>(#[[1]]+#[[3]])/2 &]][[2]] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    p=Prime[Range[200]]; p[[Flatten[1+Position[Sign[Differences[p,2]], -1]]]]
  • PARI
    p=2;q=3;forprime(r=5,1e4,if(2*q>p+r,print1(q", "));p=q;q=r) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from sympy import nextprime
    def aupto(limit):
        alst, p, q, r = [], 2, 3, 5
        while q <= limit:
            if 2*q > p + r: alst.append(q)
            p, q, r = q, r, nextprime(r)
        return alst
    print(aupto(701)) # Michael S. Branicky, Nov 17 2021

Formula

Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/2. - Alain Rocchelli, Mar 17 2024

A225496 Numbers having no balanced prime factors, cf. A006562.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84
Offset: 1

Views

Author

Reinhard Zumkeller, May 09 2013

Keywords

Comments

a(n) = A047201(n) for n <= 42.

Examples

			a(40) = 49 = 7^2 = A178943(3)^2;
a(41) = 51 = 3 * 17 = A178943(2) * A178943(6);
a(42) = 52 = 2^2 * 13 = A178943(1)^2 * A178943(5);
a(43) = 54 = 2 * 3^3 = A178943(1) * A178943(2)^3;
a(44) = 56 = 2^3 * 7 = A178943(1)^3 * A178943(3);
a(45) = 57 = 3 * 19 = A178943(2) * A178943(7).
		

Crossrefs

Cf. A225493 (strong), A225494 (balanced), A225495 (weak).

Programs

  • Haskell
    import Data.Set (singleton, fromList, union, deleteFindMin)
    a225496 n = a225496_list !! (n-1)
    a225496_list = 1 : h (singleton p) ps [p] where
       (p:ps) = a178943_list
       h s xs'@(x:xs) ys
         | m > x     = h (s `union` (fromList $ map (* x) (1 : ys))) xs ys
         | otherwise = m : h (s' `union` (fromList $ map (* m) ys')) xs' ys'
         where ys' = m : ys; (m, s') = deleteFindMin s

Formula

Multiplicative closure of A178943; a(n) mod A006562(k) > 0 for all k.
Showing 1-4 of 4 results.