A264430 Triangle read by rows, Bell transform of second order Bell numbers (A187761).
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 23, 50, 35, 10, 1, 0, 106, 268, 225, 85, 15, 1, 0, 568, 1645, 1603, 735, 175, 21, 1, 0, 3459, 11348, 12572, 6713, 1960, 322, 28, 1, 0, 23544, 86775, 107738, 65352, 22323, 4536, 546, 36, 1, 0, 176850, 727629, 1001895, 678980, 263865, 63021, 9450, 870, 45, 1
Offset: 0
Examples
Triangle starts: [1] [0, 1] [0, 1, 1] [0, 2, 3, 1] [0, 6, 11, 6, 1] [0, 23, 50, 35, 10, 1] [0, 106, 268, 225, 85, 15, 1] [0, 568, 1645, 1603, 735, 175, 21, 1] [0, 3459, 11348, 12572, 6713, 1960, 322, 28, 1]
Links
- Peter Luschny, The Bell transform
Programs
-
Mathematica
nmax = 10; A187761[n_] := Sum[BellY[n, k, BellB /@ Range[0, n-1]], {k, 0, n}]; Table[BellY[n, k, A187761 /@ Range[0, nmax]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 10 2019 *)
-
Sage
# uses[bell_transform from A264428] def A264430_triangle(dim): uno = [1]*dim bell_numbers = [sum(bell_transform(n, uno)) for n in range(dim)] bell_number_2 = [sum(bell_transform(n, bell_numbers)) for n in range(dim)] for n in range(dim): print(bell_transform(n, bell_number_2)) A264430_triangle(10)
Comments