A327005 T(n, k) = Sum_{i=1..n} BM[k][i] where BM is the BellMatrix(x -> x mod n) as defined in A264428. Square array read by ascending antidiagonals for n >= 1 and k >= 1.
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 4, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 6, 21, 31, 0, 1, 0, 1, 2, 6, 20, 57, 0, 0, 1, 0, 1, 2, 6, 24, 101, 231, 379, 0, 1, 0, 1, 2, 6, 24, 100, 422, 1394, 0, 0, 1, 0, 1, 2, 6, 24, 105, 505, 2201, 5476, 6556, 0
Offset: 1
Examples
[1] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [2] 1, 0, 1, 0, 4, 0, 31, 0, 379, 0, 6556, 0, ... [3] 1, 0, 1, 2, 3, 21, 57, 231, 1394, 5476, 32616, 203105, ... [4] 1, 0, 1, 2, 6, 20, 101, 422, 2201, 12560, 76846, 483892, ... [5] 1, 0, 1, 2, 6, 24, 100, 505, 2620, 15383, 97480, 657305, ... [6] 1, 0, 1, 2, 6, 24, 105, 504, 2759, 16186, 103494, 710384, ...
Links
- Peter Luschny, The Bell transform.
- J. Riordan, Letter, Jul 06 1978.
Programs
-
Maple
# BellMatrix is defined in A264428. T := proc(n, k) BellMatrix(x -> modp(x, n), k): add(i, i in %[k]) end: seq(seq(T(n-k+1,k), k=1..n), n=1..12);
Comments