cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A199970 a(n) = the smallest number m with the smallest non-divisor n such that 1

Original entry on oeis.org

0, 3, 4, 6, 12, 0, 60, 420, 840, 0, 2520, 0, 27720, 0, 0, 360360, 720720, 0, 12252240, 0, 0, 0, 232792560, 0, 5354228880, 0, 26771144400, 0, 80313433200, 0, 2329089562800, 72201776446800, 0, 0, 0, 0, 144403552893600, 0, 0, 0, 5342931457063200, 0, 219060189739591200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 26 2011

Keywords

Examples

			a(7) = 60 because 60 is the smallest number such that numbers k < 7 divides 60 but number 7 is not divisor of 60.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[PrimePowerQ[n], If[n <= 3, n+1, LCM @@ Range[n-1]], 0]; Array[a, 50] (* Amiram Eldar, Aug 06 2024 *)

Formula

a(n) > 0 for prime powers n = p^k (p prime, k >= 1) else 0.
a(n) = A003418(n-1) for n = p^k > 3 (p prime, k >= 1). - Amiram Eldar, Aug 06 2024

Extensions

More terms from Amiram Eldar, Aug 06 2024

A051846 Digits 1..n in strict descending order n..1 interpreted in base n+1.

Original entry on oeis.org

1, 7, 57, 586, 7465, 114381, 2054353, 42374116, 987654321, 25678050355, 736867805641, 23136292864686, 789018236134297, 29043982525261081, 1147797409030816545, 48471109094902544776, 2178347851919531492065, 103805969587115219182431
Offset: 1

Views

Author

Antti Karttunen, Dec 13 1999

Keywords

Comments

All odd-indexed (2n+1) terms are divisible by (2n+1). See A051847.
All even-indexed (2n) terms are divisible by n. - Alexander R. Povolotsky, Oct 20 2022

Examples

			a(1) = 1,
a(2) = 2*3 + 1 = 7,
a(3) = 3*(4^2) + 2*4 + 1 = 57,
a(4) = 4*(5^3) + 3*(5^2) + 2*5 + 1 = 586.
		

Crossrefs

The right edge of A051845.

Programs

  • Maple
    a(n) := proc(n) local i; add(i*((n+1)^(i-1)),i=1..n); end;
  • Mathematica
    Array[Sum[i*(# + 1)^(i - 1), {i, #}] &, 18] (* Michael De Vlieger, Apr 04 2024 *)
  • Maxima
    makelist(((n+1)^(n+1)*(n-1) + 1)/n^2,n,1,20); /* Martin Ettl, Jan 25 2013 */
    
  • PARI
    a(n)=((n+1)^(n+1)*(n-1)+1)/n^2
    
  • Python
    def a(n): return sum((i+1)*(n+1)**i for i in range(n))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Apr 10 2022

Formula

a(n) = Sum_{i=1..n} i*(n+1)^(i-1).
a(n) = ((n+1)^(n+1)*(n-1) + 1)/n^2 = A062806(n+1)/(n+1) - (n+1)^(n+1). - Benoit Cloitre, Sep 28 2002
a(n) = A028310(n-1) * A023811(n+1) + A199969(n+1). - M. F. Hasler, Jan 22 2013
a(n) = (n-1) * A058128(n+1) + 1. - Seiichi Manyama, Apr 10 2022

Extensions

Minor edits in formulas by M. F. Hasler, Oct 11 2019

A199968 a(n) = the smallest non-divisor h of n (1

Original entry on oeis.org

0, 0, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Jaroslav Krizek, Nov 26 2011

Keywords

Comments

a(n) = A173540(n,1). - Reinhard Zumkeller, Oct 02 2015

Crossrefs

Cf. A199969 (the greatest non-divisor h of n (1A199970.
Cf. A173540.

Programs

Formula

a(n) = A007978(n) for n>=3.

A289207 a(n) = max(0, n-2).

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 0

Views

Author

Keywords

Comments

This simple sequence is such that there is one and only one array of differences D(n,k) where the first and the second upper subdiagonal is a(n).
The rows of this array are existing sequences of the OEIS, prepended with zeros:
row 0 is A118425,
row 1 is A006478,
row 2 is A001629,
row 3 is A010049,
row 4 is A006367,
row 5 is not in the OEIS.
It can be observed that a(n) is an autosequence of the first kind whose second kind mate is A199969. In addition, the structure of the array D(n,k) shows that the first row is an autosequence.
For n = 1 to 8, rows with only one leading zero are also autosequences.

Examples

			Array of differences begin:
   0,   0,   0,   0,  0,   0,  0,  1,  4, 12, 30, 68, ...
   0,   0,   0,   0,  0,   0,  1,  3,  8, 18, 38, 76, ...
   0,   0,   0,   0,  0,   1,  2,  5, 10, 20, 38, 71, ...
   0,   0,   0,   0,  1,   1,  3,  5, 10, 18, 33, 59, ...
   0,   0,   0,   1,  0,   2,  2,  5,  8, 15, 26, 46, ...
   0,   0,   1,  -1,  2,   0,  3,  3,  7, 11, 20, 34, ...
   0,   1,  -2,   3, -2,   3,  0,  4,  4,  9, 14, 24, ...
   1,  -3,   5,  -5,  5,  -3,  4,  0,  5,  5, 10, 16, ...
  -4,   8, -10,  10, -8,   7, -4,  5,  0,  6,  6, 17, ...
  12, -18,  20, -18, 15, -11,  9, -5,  6,  0,  7,  7, ...
  ...
		

Crossrefs

Essentially the same as A023444. Cf. A001477, A118425, A006478, A001629, A010049, A006367, A199969.

Programs

  • Mathematica
    a[n_] := Max[0, n - 2];
    D[n_, k_] /; k == n + 1 := a[n]; D[n_, k_] /; k == n + 2 := a[n]; D[n_, k_] /; k > n + 2 := D[n, k] = Sum[D[n + 1, j], {j, 0, k - 1}]; D[n_, k_] /; k <= n := D[n, k] = D[n - 1, k + 1] - D[n - 1, k];
    Table[D[n, k], {n, 0, 11}, {k, 0, 11}]

Formula

G.f.: x^3 / (1-x)^2.

A277627 Square array read by antidiagonals downwards: T(n,k), n>=0, k>=0, in which column 0 is equal to A057427: 0, 1, 1, 1, ..., and for k > 0 column k lists two zeros followed by the partial sums of column k-1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 3, 5, 1, 0, 0, 0, 0, 0, 0, 0, 6, 6, 1, 0, 0, 0, 0, 0, 0, 0, 1, 10, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 15, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 21, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 28, 10, 1
Offset: 0

Views

Author

Paul Curtz, Oct 24 2016

Keywords

Comments

In other words, for n > 0 the column k lists 2*k+1 zeros together with the partial sums of the positive terms of column k-1. - Omar E. Pol, Oct 25 2016
Comments from the author:
1) ZSPEC =
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, 0, 0, ...
1, 3, 1, 0, 0, 0, 0, 0, ...
1, 4, 3, 0, 0, 0, 0, 0, ...
1, 5, 6, 1, 0, 0, 0, 0, ...
etc.
The columns are the autosequences of the first kind of the title (column 1: 0, 0, followed by A001477(n); column 2: 0, 0, 0, 0, followed by A000217(n), etc) .
The positive terms are the Pascal triangle written by diagonals (A011973).
First column: A060576(n+1). Or A057427(n), n>-1, thanks to Omar E. Pol.
Row sums: A000045(n), autosequence of the first kind.
Alternated row sums and subtractions: 0, 1, 1, 0, -1, -1, 0 = A128834(n), autosequence of the first kind.
Antidiagonal sums: 0, 1, 1, 1, 2, 3, 4, 6, ... = A078012(n+2).
Application.
Numbers in triangle leading to the Genocchi numbers -A226158(n).
We multiply the columns of ZSPEC by d(n) = 1, -1, 2, -8, 56, -608, ... from A005439.
Hence, with only the first 0,
0,
1,
1,
1, -1,
1, -2,
1, -3, 2,
1, -4, 6,
1, -5, 12, -8,
1, -6, 20, -32,
1, -7, 30, -80, 56,
1, -8, 42, -160, 280,
etc.
The row sums is -A226158(n).
2) Now consider the case of the autosequences of the second kind.
First step.
2, 1, 1, 1, 1, 1, ... = A054977(n)
0, 0, 2, 3, 4, 5, 6, 7, ... = A199969(n) with offset 0
0, 0, 0, 0, 2, 5, 9, 14, 20, 27, ... see A000096
etc.
The positive terms are ASPEC in A191302. By triangle, they are either A029653(n) with A029653(0) = 2 instead of 1 or A029635(n).
Second step. YSPEC =
2, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, ...
1, 3, 0, 0, 0, 0, ...
1, 4, 2, 0, 0, 0, ...
1, 5, 5, 0, 0, 0, ...
1, 6, 9, 2, 0, 0, ...
1, 7, 14, 7, 0, 0, ...
etc.
Diagonals by triangle: A029635(n).
This is the companion to ZSPEC.
Row sums: A000032(n), autosequence of the second kind.
Alternated row sums and subtractions: period 6 repeat 2, 1, -1, -2, -1, 1 = A087204(n), autosequence of the second kind.
Application.
Numbers in triangle leading to A230324(n), a companion to -A226158(n).
We multiply the columns of YSPEC by d(n) 1, -1, 2, -8, 56, ... (see above).
Hence, without zeros:
2,
1,
1, -2,
1, -3,
1, -4, 4,
1, -5, 10,
1, -6, 18, -16,
1, -7, 28, -56,
1, -8, 40, -128, 112,
1, -9, 54, -240, 504,
etc.
The row sum is A230324(n).

Crossrefs

Cf. A011973 (without 0's), A007318 (Pascal's triangle).
Cf. A000045 (row sums), A078012 (antidiagonal sums).
Columns: A060576 or A057427 (k=0), A001477 (k=1), A000217 (k=2).

Programs

  • Mathematica
    kMax = 13; col[0] = Join[{0}, Array[1&, kMax]]; col[k_] := col[k] = Join[{0, 0}, col[k-1][[1 ;; -3]] // Accumulate]; T[n_, k_] := col[k][[n+1]]; Table[T[n-k, k], {n, 0, kMax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 15 2016 *)

Extensions

Better definition from Omar E. Pol, Oct 25 2016

A242246 Numerators of n*A164555(n-1)/A027642(n-1).

Original entry on oeis.org

0, 1, 1, 1, 0, -1, 0, 1, 0, -3, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -1181820455, 0, 76977927, 0, -23749461029, 0, 8615641276005, 0, -84802531453387, 0, 90219075042845, 0
Offset: 0

Views

Author

Paul Curtz, May 09 2014

Keywords

Comments

First multiplied shifted (second) Bernoulli numbers.
A164555(n-1)/A027642(n-1) = 0 followed by (A164555(n)/A027642(n)=1, 1/2, 1/6,...) = f(n) = 0, 1, 1/2, 1/6, 0,... .
f(n+1) - f(n) = A051716(n)/A051717(n).
Generally we consider a transform applied to the autosequences of first or second kind. An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. It is of the first kind if the main diagonal is A000004=0's. It is of the second kind if the main diagonal is the first upper diagonal multiplied by 2. A000045(n) is an autosequence of the first kind. A164555(n)/A027642(n) is an autosequence of the second kind. See A190339 (and A241269).
Here we apply the transform to the Bernoulli numbers A164555(n)/A027642(n).
We take n*(0 followed by A164555(n)/A027642(n)).
Hence the autosequence of first kind
TB1(n) = 0, 1, 1, 1/2, 0, -1/6, 0, 1/6, 0, -3/10, 0, 5/6, O, -691/210,.. .
a(n) are the numerators.
The first seven rows of the differencece table of TB1(n) are
0, 1, 1, 1/2, 0, - 1/6, 0, 1/6,...
1, 0, -1/2, -1/2, -1/6, 1/6, 1/6, -1/6,... =A140351(n+1)/b(n+1)
-1, -1/2, 0, 1/3, 1/3, 0, -1/3, -2/15,...
1/2, 1/2, 1/3, 0, -1/3, -1/3, 1/5, 11/15,...
0, -1/6, -1/3, -1/3, 0, 8/15, 8/15, -4/5,...
-1/6, -1/6, 0, 1/3, 8/15, 0, -4/3, -4/3,...
0, 1/6, 1/3, 1/5, -8/15, -4/3, 0, 512/105,... .
First and second upper diagonals: 1, -1/2, 1/3, -1/3, 8/15, -4/3, 512/105,... .
Sum of the antidiagonals:
0, 1, 1, 0, -1/2, 0, 1/2, 0, -5/6, 0, 13/6, 0, -49/6, 0,... .
(Note that the same transform applied to the second fractional Euler numbers A198631(n)/A006519(n+1) yields the Genocchi numbers -A226158(n)).
This transform can be continued:
TB2(n) = n*(0 followed by TB1(n)) =
0, 0, 2, 3, 2, 0, -1, 0, 4/3, 0, -3, 0, 10, 0, -691/15, 0, 280, 0,...
is an autosequence of second kind.
TB3(n) = 0, 0, 0, 6, 12, 10, 0, -7, 0, 12, 0, -33, 0, 130, 0, 691, 0,...
is apparently an integer autosequence of the first kind.

Crossrefs

Cf. A199969 (autosequence).

Formula

a(n) = 0 followed by (A050925(n) = 1, -1, 1, 0,... ) with 1 instead of -1.
a(2n) = A063524(n). a(2n+1) = A002427(n).

A281825 Numerators of the binomial transform of A198631(n)/A006519(n+1) with A198631(1) = -1 instead of 1.

Original entry on oeis.org

1, 1, 0, -3, -2, -7, -4, -23, -6, -45, -8, 655, -10, -5483, -12, 929361, -14, -3202321, -16, 221930513, -18, -4722116559, -20, 968383680659, -22, -14717667114197, -24, 2093660879252571, -26, -86125672563201235, -28, 129848163681107301025, -30
Offset: 0

Views

Author

Paul Curtz, Jan 31 2017

Keywords

Comments

What is the correct name for the rational sequence c(n) = 1, -1/2, 0, -1/4, 0, 1/2, 0, -17/8, 0, 31/2, 0, ... (a variant of the second fractional Euler numbers)?
Its binomial transform is f(n) = 1, 1/2, 0, -3/4, -2, -7/2, -4, -23/8, -6, -45/2, -8, 655/4, -10, ... = a(n)/A006519(n+1).

Crossrefs

Programs

  • Maple
    A198631 := proc(n)
        1/(1+exp(-x)) ;
        coeftayl(%,x=0,n) ;
        numer(%*n!) ;
    end proc:
    A006519 := proc(n)
        2^padic[ordp](n,2) ;
    end proc:
    L := [seq( A198631(n)/A006519(n+1),n=0..40)] ;
    subsop(2=-1/2,L) ;
    b := BINOMIAL(%) ;
    for i from 1 to nops(b) do
        printf("%d,",numer(b[i])) ;
    end do: # R. J. Mathar, Feb 21 2017

Formula

By definition f(0) - c(0), f(1) + c(1), f(2) - c(2), f(3) + c(3), ... is an autosequence of the first kind, here 1 - 1 = 0, 1/2 - 1/2 = 0, 0 - 0 = 0, -3/4 - 1/4 = -1, -2 - 0 = -2, -7/2 + 1/2 = -3, ... i.e., t(n) = 0, 0, followed by -A001477(n), not in the OEIS, but the corresponding autosequence of the second kind is: A199969 = 0, 0, -2, -3, -4, ... Hence f(n) from c(n) and t(n).

A344215 a(n) = n*(3^(n-1) - 2^(n-1)).

Original entry on oeis.org

0, 0, 2, 15, 76, 325, 1266, 4655, 16472, 56745, 191710, 638275, 2101188, 6855485, 22205834, 71498775, 229058224, 730680145, 2322163638, 7356008555, 23234743580, 73200452325, 230081633122, 721667902015, 2259234965256, 7060318981625, 22028631430286, 68628565425555, 213512971483252
Offset: 0

Views

Author

Enrique Navarrete, May 11 2021

Keywords

Comments

a(n) is the number of quaternary strings of length n that contain one 0 and at least one 1.
For ternary strings with this property see A058877; for binary strings see A199969.

Examples

			a(3)=15 since the strings are the 3 permutations of 011, the 6 permutations of 012 and the 6 permutations of 013.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -37, 60, -36}, {0, 0, 2, 15}, 29] (* Amiram Eldar, May 11 2021 *)
    Table[n(3^(n-1)-2^(n-1)),{n,0,30}] (* Harvey P. Dale, Mar 13 2022 *)

Formula

E.g.f.: x*(exp(3*x) - exp(2*x)).
G.f.: x^2*(2 - 5*x)/(1 - 5*x + 6*x^2)^2. - Stefano Spezia, May 12 2021
Showing 1-8 of 8 results.