A200742
Greatest number such that in table A200741 the first terms in row n coincide with row n+1.
Original entry on oeis.org
1, 2, 4, 10, 7, 35, 33, 36, 31, 82, 17, 81, 78, 170, 55, 132, 28, 195, 247, 313, 439, 325, 415, 498, 376, 213, 161, 693, 608, 948, 739, 557, 831, 1007, 1252, 631, 1156, 1370, 148, 579, 1023, 1755, 1677, 1239, 1638, 1839, 2281, 2401, 1963, 2630, 2521, 2951
Offset: 1
Original entry on oeis.org
0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0
From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
. o
. o o
. o o
. o o o o
. o o o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o
. n=1 n=2 n=3 n=4
(End)
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- A. J. C. Cunningham, Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n], Messenger Math., 54 (1924), 17-21. [Incomplete annotated scanned copy]
- Frank Ellermann, Illustration of binomial transforms.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Leo Tavares, Hexagonal illustration
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Eric Weisstein's World of Mathematics, Unit.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a033428 = (* 3) . (^ 2)
a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
(map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
-- Reinhard Zumkeller, Jul 11 2013
-
[3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
-
seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
-
3 Range[0, 50]^2
LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
-
makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
a(n)=3*n^2
-
def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022
A100440
Number of distinct values of i*j + j*k + k*i with 1 <= i <= j <= k <= n.
Original entry on oeis.org
1, 4, 10, 20, 33, 50, 68, 93, 123, 154, 193, 233, 276, 325, 377, 434, 500, 568, 643, 720, 804, 885, 979, 1068, 1168, 1274, 1381, 1495, 1615, 1746, 1876, 2005, 2148, 2285, 2437, 2596, 2748, 2908, 3077, 3241, 3425, 3608, 3796, 3979, 4181, 4388, 4585, 4804, 5015, 5237
Offset: 1
-
a100440 = length . a200741_row -- Reinhard Zumkeller, Nov 21 2011
-
f:=proc(n) local i,j,k,t1; t1:={}; for i from 1 to n do for j from i to n do for k from j to n do t1:={op(t1),i*j+j*k+k*i}; od: od: od: t1:=convert(t1,list); nops(t1); end;
-
f[n_] := Length[ Union[ Flatten[ Table[i*j + j*k + k*i, {i, n}, {j, i, n}, {k, j, n}] ]]]; Table[ f[n], {n, 48}] (* Robert G. Wilson v, Dec 14 2004 *)
-
first(n) = {my(v = vector(3*n^2, i, oo), res = vector(n)); forvec(x = vector(3, i, [1,n]), c = x[1]*x[2] + x[1]*x[3] + x[2]*x[3]; v[c] = min(x[3],v[c]); , 1); for(i = 1, #v, if(v[i] < oo, res[v[i]]++)); for(i = 2, #res, res[i] += res[i-1]); res } \\ David A. Corneth, Mar 23 2021
-
from numba import njit
@njit()
def aupton(terms):
aset, alst = set(), []
for n in range(1, terms+1):
for i in range(1, n+1):
for j in range(i, n+1):
aset.add(i*j + j*n + n*i)
alst.append(len(aset))
return alst
print(aupton(50)) # Michael S. Branicky, Mar 23 2021
A200737
Table of numbers of the form v*w + w*u + u*v with 1 <= u <= v <= w <= n, with repetitions.
Original entry on oeis.org
3, 3, 5, 8, 12, 3, 5, 7, 8, 11, 12, 15, 16, 21, 27, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 19, 20, 21, 24, 26, 27, 32, 33, 40, 48, 3, 5, 7, 8, 9, 11, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 24, 26, 27, 29, 31, 32, 33, 35, 38, 39, 40, 45, 47, 48, 55, 56, 65
Offset: 1
First 5 rows:
1: 3;
2: 3,5,8,12;
3: 3,5,7,8,11,12,15,16,21,27;
4: 3,5,7,8,9,11,12,14,15,16,19,20,21,24,26,27,32,33,40,48;
5: 3,5,7,8,9,11,11,12,14,15,16,17,19,20,21,23,24,24,26,27,29,31,... .
First terms of 5th row:
T(5,1) = 1*1 + 1*1 + 1*1 = 3;
T(5,2) = 1*2 + 2*1 + 1*1 = 5;
T(5,3) = 1*3 + 3*1 + 1*1 = 7;
T(5,4) = 2*2 + 2*1 + 1*2 = 8;
T(5,5) = 1*4 + 4*1 + 1*1 = 9;
T(5,6) = 1*5 + 5*1 + 1*1 = 11;
T(5,7) = 2*3 + 3*1 + 1*2 = 11 = T(5,6);
T(5,8) = 2*2 + 2*2 + 2*2 = 12;
T(5,9) = 2*4 + 4*1 + 1*2 = 14;
T(5,10) = 3*3 + 3*1 + 1*3 = 15;
T(5,11) = 2*3 + 3*2 + 2*2 = 16;
T(5,12) = 2*5 + 5*1 + 1*2 = 17; ... .
Showing 1-4 of 4 results.
Comments