cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A100157 Structured rhombic dodecahedral numbers (vertex structure 9).

Original entry on oeis.org

1, 14, 55, 140, 285, 506, 819, 1240, 1785, 2470, 3311, 4324, 5525, 6930, 8555, 10416, 12529, 14910, 17575, 20540, 23821, 27434, 31395, 35720, 40425, 45526, 51039, 56980, 63365, 70210, 77531, 85344, 93665, 102510, 111895, 121836, 132349, 143450, 155155, 167480
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis octahedral numbers (vertex structure 9) (Cf. A100171 = alternate vertex); and structured heptagonal anti-prism numbers (Cf. A100185 = structured anti-prisms).
If Y is a 2-subset of a 2n-set X then, for n>=2, a(n-1) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Let M(2n-1) be a (2n-1)x(2n-1) matrix whose (i,j)-entry equals i^2/(i^2+sqrt(-1)) if i=j and equals 1 otherwise. Then a(n) equals (-1)^(n+1) times the real part of prod(k^2+sqrt(-1),k=1...2n-1) times the determinant of M(2n-1). - John M. Campbell, Sep 07 2011
Principal diagonal of the convolution array A213752. - Clark Kimberling, Jun 20 2012
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n)= Cat(n,4), so enumerates the number of (n+1)-gon partitions of a (4*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A234043 (k=5). Also, a(n)= A006918(4n+1) = A008610(4n+1) = A053307(4n+1) with offset=0. - Tom Copeland, Oct 05 2014

Examples

			For n=4, sum( (4+i)^2, i=-3..3 ) = (4-3)^2+(4-2)^2+(4-1)^2+(4-0)^2+(4+1)^2+(4+2)^2+(4+3)^2 = 140 = a(4). - _Bruno Berselli_, Jul 24 2014
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Cf. A005915 = alternate vertex; A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(16*n^3-12*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*4), m=1..32) ; # Zerinvary Lajos, Jan 02 2008
  • PARI
    a(n)=(16*n^3-12*n^2+2*n)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = (16*n^3 - 12*n^2 + 2*n)/6.
a(n) = n*(2*n-1)*(4*n-1)/3 = A000330(2*n-1). - Reinhard Zumkeller, Jul 06 2009
Sum_{n>=1} 1/(24*a(n)) = Pi/8-log(2)/2 = 0.046125491418751... [Jolley eq. 251]
G.f.: x*(1+10*x+5*x^2)/(x-1)^4. - R. J. Mathar, Oct 03 2011
a(n) = binomial(2*n+1,3) + binomial(2*n,3). - John Molokach, Jul 10 2013
a(n) = Sum_{i=-(n-1)..(n-1)} (n+i)^2. - Bruno Berselli, Jul 24 2014
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(8*x^2 + 18*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

A071238 a(n) = n*(n+1)*(2*n^2+1)/6.

Original entry on oeis.org

0, 1, 9, 38, 110, 255, 511, 924, 1548, 2445, 3685, 5346, 7514, 10283, 13755, 18040, 23256, 29529, 36993, 45790, 56070, 67991, 81719, 97428, 115300, 135525, 158301, 183834, 212338, 244035, 279155, 317936, 360624, 407473, 458745, 514710, 575646, 641839
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

Binomial transform of [1, 8, 21, 22, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
For n > 0, a(n) is the n-th antidiagonal sum of the convolution arrays A213752 and A213836). - Clark Kimberling, Jun 20 2012
The first differences are given in A277229, as a convolution of the odd-indexed triangular numbers A000217(2*n+1) and the squares A000290(n), n >= 0. - J. M. Bergot, Sep 14 2016

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A000292, A002417, A071270, A277229 (first differences).

Programs

  • Magma
    [n*(n+1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Maple
    A071238:=n->n*(n+1)*(2*n^2+1)/6: seq(A071238(n), n=0..60); # Wesley Ivan Hurt, Sep 24 2016
  • Mathematica
    Table[n (n + 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)
    CoefficientList[Series[x (1 + x) (1 + 3 x)/(1 - x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,9,38,110},40] (* Harvey P. Dale, Oct 02 2021 *)
  • PARI
    a(n)=n*(n+1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013

Formula

G.f.: x*(1+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 22 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4, a(0)=0, a(1)=1, a(2)=9, a(3)=38, a(4)=110. - Yosu Yurramendi, Sep 03 2013
E.g.f.: (1/6)*x*(6 + 21*x + 14*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Sep 17 2016
a(n) = n*A000292(n) + (n-1)*A000292(n-1). - Bruno Berselli, Sep 22 2016
a(n) = A002417(n-1) + A002417(n). - Yasser Arath Chavez Reyes, Feb 15 2024

A143941 The Wiener index of a chain of n triangles (i.e., joined like VVV..VV; here V is a triangle!).

Original entry on oeis.org

3, 14, 37, 76, 135, 218, 329, 472, 651, 870, 1133, 1444, 1807, 2226, 2705, 3248, 3859, 4542, 5301, 6140, 7063, 8074, 9177, 10376, 11675, 13078, 14589, 16212, 17951, 19810, 21793, 23904, 26147, 28526, 31045, 33708, 36519, 39482, 42601, 45880, 49323, 52934
Offset: 1

Views

Author

Emeric Deutsch, Sep 06 2008

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
Row 2 of the convolution array A213752. - Clark Kimberling, Jun 20 2012
Also the circuit rank of the (n+2) X (n+2) bishop graph. - Eric W. Weisstein, May 10 2019

Examples

			a(2)=14 because in the graph VV (V is a triangle!) we have 6 distances equal to 1 and 4 distances equal to 2.
		

Crossrefs

Programs

  • Magma
    [n*(1+6*n+2*n^2)/3 : n in [1..40]]; // Wesley Ivan Hurt, Apr 08 2015
  • Maple
    seq((1/3)*n*(1+6*n+2*n^2), n=1..43);
  • Mathematica
    CoefficientList[Series[(3+2*x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 03 2012 *)
    LinearRecurrence[{4,-6,4,-1},{3,14,37,76},50] (* Harvey P. Dale, Sep 06 2023 *)

Formula

a(n) = n*(1 + 6*n + 2*n^2)/3.
G.f.: z*(3 + 2*z - z^2)/(1-z)^4.
a(n) = Sum_{k=1..n} k*A143940(n,k).
a(n) = Sum_{k=1..n} A142463(k). - Richard R. Forberg, Jan 09 2015
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 08 2015
E.g.f.: exp(x)*x*(9 + 12*x + 2*x^2)/3. - Stefano Spezia, Jan 03 2022
Showing 1-4 of 4 results.