A002095
Number of partitions of n into nonprime parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 8, 12, 13, 17, 19, 26, 28, 37, 40, 52, 58, 73, 79, 102, 113, 139, 154, 191, 210, 258, 284, 345, 384, 462, 509, 614, 679, 805, 893, 1060, 1171, 1382, 1528, 1792, 1988, 2319, 2560, 2986, 3304, 3823, 4231, 4888, 5399, 6219, 6870
Offset: 0
a(6) = 3 from the partitions 6 = 1+1+1+1+1+1 = 4+1+1.
- L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
- A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000 (but beware errors).
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 2.6.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a002095 = p a018252_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Jan 15 2012
-
g:=product((1-x^ithprime(j))/(1-x^j),j=1..60): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..55); # Emeric Deutsch, Apr 19 2006
-
NonPrime[n_Integer] := FixedPoint[n + PrimePi[ # ] &, n + PrimePi[n]]; CoefficientList[ Series[1/Product[1 - x^NonPrime[i], {i, 1, 50}], {x, 0, 50}], x]
-
first(n)=my(x='x+O('x^(n+1)),pr=1); forprime(p=2,n+1, pr *= (1-x^p)); pr/prod(i=1,n+1, 1-x^i) \\ Charles R Greathouse IV, Jun 23 2017
A037032
Total number of prime parts in all partitions of n.
Original entry on oeis.org
0, 1, 2, 4, 7, 13, 20, 32, 48, 73, 105, 153, 214, 302, 415, 569, 767, 1034, 1371, 1817, 2380, 3110, 4025, 5199, 6659, 8512, 10806, 13684, 17229, 21645, 27049, 33728, 41872, 51863, 63988, 78779, 96645, 118322, 144406, 175884, 213617, 258957, 313094, 377867
Offset: 1
From _Omar E. Pol_, Nov 20 2011 (Start):
For n = 6 we have:
--------------------------------------
. Number of
Partitions prime parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
5 + 1 ...................... 1
3 + 2 + 1 .................. 2
4 + 1 + 1 .................. 0
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 1
2 + 1 + 1 + 1 + 1 .......... 1
1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
Total ..................... 13
So a(6) = 13.
(End)
-
with(combinat): a:=proc(n) local P,c,j,i: P:=partition(n): c:=0: for j from 1 to numbpart(n) do for i from 1 to nops(P[j]) do if isprime(P[j][i])=true then c:=c+1 else c:=c fi: od: od: c: end: seq(a(n),n=1..42); # Emeric Deutsch, Mar 30 2006
# second Maple program
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(isprime(i), g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
a[n_] := Sum[PrimeNu[k]*PartitionsP[n - k], {k, 1, n}]; Array[a, 100] (* Jean-François Alcover, Mar 16 2015, after Vladeta Jovovic *)
-
a(n)={sum(k=1, n, omega(k)*numbpart(n-k))} \\ Andrew Howroyd, Dec 28 2017
A224344
Number T(n,k) of compositions of n using exactly k primes (counted with multiplicity); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 5, 1, 3, 8, 5, 5, 13, 13, 1, 7, 23, 27, 7, 11, 39, 52, 25, 1, 17, 65, 99, 66, 9, 27, 106, 186, 151, 41, 1, 40, 177, 340, 323, 133, 11, 61, 293, 608, 666, 358, 61, 1, 92, 482, 1076, 1330, 867, 236, 13, 142, 781, 1894, 2581, 1971, 737, 85, 1
Offset: 0
A(5,1) = 8: [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [3,1,1], [1,3,1], [1,1,3], [5].
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3;
2, 5, 1;
3, 8, 5;
5, 13, 13, 1;
7, 23, 27, 7;
11, 39, 52, 25, 1;
17, 65, 99, 66, 9;
27, 106, 186, 151, 41, 1;
40, 177, 340, 323, 133, 11;
...
-
T:= proc(n) option remember; local j; if n=0 then 1
else []; for j to n do zip((x, y)->x+y, %,
[`if`(isprime(j), 0, NULL), T(n-j)], 0) od; %[] fi
end:
seq(T(n), n=0..16);
-
zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, Thread[f[PadRight[x, m, z], PadRight[y, m, z]]]]; T[n_] := T[n] = Module[{j, pc}, If[n == 0, {1}, pc = {}; For[j = 1, j <= n, j++, pc = zip[Plus, pc, Join[If[PrimeQ[j], {0}, {}], T[n-j]], 0]]; pc]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)
A299730
Irregular triangle read by rows: T(n,k) is the number of partitions of 3*n having exactly k prime parts; n >= 0, 0 <= k <= floor( 3*n / 2 ).
Original entry on oeis.org
1, 1, 2, 3, 4, 3, 1, 6, 9, 8, 5, 2, 12, 20, 19, 14, 8, 3, 1, 19, 41, 42, 34, 21, 12, 5, 2, 37, 72, 88, 74, 53, 31, 18, 8, 3, 1, 58, 136, 161, 155, 115, 77, 46, 25, 12, 5, 2, 102, 226, 307, 291, 241, 168, 110, 65, 35, 18, 8, 3, 1
Offset: 0
The irregular triangle T(n, k) begins:
3n\k 0 1 2 3 4 5 6 7 8 9
0: 1
3: 1 2
6: 3 4 3 1
9: 6 9 8 5 2
12: 12 20 19 14 8 3 1
15: 19 41 42 34 21 12 5 2
18: 37 72 88 74 53 31 18 8 3 1
-
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, 1,
add(b(n-i*j, i-1)*`if`(isprime(i), x^j, 1), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(3*n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 03 2018
-
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, 1,
Sum[b[n - i*j, i - 1]*If[PrimeQ[i], x^j, 1], {j, 0, n/i}]]];
T[n_] := CoefficientList[b[3n, 3n], x];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Mar 08 2021, after Alois P. Heinz *)
A274517
Number T(n,k) of integer partitions of n with exactly k distinct primes.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 2, 4, 1, 3, 7, 1, 3, 9, 3, 5, 12, 5, 6, 15, 9, 8, 22, 11, 1, 8, 28, 19, 1, 12, 38, 24, 3, 13, 46, 38, 4, 17, 62, 48, 8, 19, 77, 68, 12, 26, 98, 87, 20, 28, 117, 127, 24, 1, 37, 152, 154, 41, 1, 40, 183, 210, 55, 2, 52, 230, 260, 82, 3
Offset: 0
T(6,1) = 7 because we have: 5+1, 4+2, 3+3, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1+1.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2;
2, 3;
2, 4, 1;
3, 7, 1;
3, 9, 3;
5, 12, 5;
6, 15, 9;
8, 22, 11, 1;
...
-
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
`if`(j>0 and isprime(i), x, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Jun 26 2016
-
nn = 20; Map[Select[#, # > 0 &] &, CoefficientList[Series[Product[
1/(1 - z^k), {k,Select[Range[1000], PrimeQ[#] == False &]}] Product[
u/(1 - z^j) - u + 1, {j, Table[Prime[n], {n, 1, nn}]}], {z, 0,
nn}], {z, u}]] // Grid
A299731
Number of partitions of 3*n that have exactly n prime parts.
Original entry on oeis.org
1, 2, 3, 5, 8, 12, 18, 25, 35, 50, 69, 93, 126, 167, 220, 290, 377, 486, 627, 800, 1017, 1290, 1623, 2032, 2542, 3161, 3917, 4843, 5960, 7312, 8957, 10925, 13291, 16139, 19534, 23588, 28437, 34180, 41000, 49099, 58657, 69941, 83269, 98917, 117314, 138930
Offset: 0
For n = 3: the five partitions of 3 * 3 = 9 that have exactly three prime parts are (5, 2, 2), (3, 3, 3), (3, 3, 2, 1), (3, 2, 2, 1, 1), and (2, 2, 2, 1, 1, 1), so a(3) = 5.
-
zip[f_, x_, y_, z_] := With[{m = Max[Length[x], Length[y]]}, Thread[f[ PadRight[x, m, z], PadRight[y, m, z]]]];
b[n_, i_] := b[n, i] = Module[{j, pc}, Which[n == 0, {1}, i < 1, {0}, True, pc = {}; For[j = 0, j <= n/i, j++, pc = zip[Plus, pc, Join[If[PrimeQ[i], Array[0 &, j], {}], b[n - i*j, i - 1]], 0]]; pc]];
a[n_] := b[3 n, 3 n][[n + 1]];
Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 16 2018, after Alois P. Heinz *)
-
a(n) = {my(nb = 0); forpart(p=3*n, if (sum(k=1, #p, isprime(p[k])) == n, nb++);); nb;} \\ Michel Marcus, Mar 22 2018
-
See Stauduhar link.
A299732
a(n) has exactly (a(n) - n) / 2 partitions with exactly (a(n) - n) / 2 prime parts.
Original entry on oeis.org
2, 5, 8, 13, 20, 29, 42, 57, 78, 109, 148, 197, 264, 347, 454, 595, 770, 989, 1272, 1619, 2054, 2601, 3268, 4087, 5108, 6347, 7860, 9713, 11948, 14653, 17944, 21881, 26614, 32311, 39102, 47211, 56910, 68397, 82038, 98237, 117354, 139923, 166580, 197877, 234672
Offset: 0
For n = 3: A299731(3) = 5. a(3) = 2*5 + 3 = 13. The five partitions of 13 that have exactly five prime parts are: (5,2,2,2,2), (3,3,3,2,2), (3,3,2,2,2,1), (3,2,2,2,2,1,1), and (2,2,2,2,2,1,1,1), so a(3) = 13.
Showing 1-7 of 7 results.
Comments