cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002383 Primes of form k^2 + k + 1.

Original entry on oeis.org

3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
Offset: 1

Views

Author

Keywords

Comments

Also primes p such that 4p-3 is square. - Giovanni Teofilatto, Sep 07 2005
Also these primes are sums of 1 and some consecutive even numbers starting at 2; e.g., 31 = 1+2+4+6+8+10. - Labos Elemer, Apr 15 2003
Also primes of form n^2 - n + 1 (Prime central polygonal numbers, A002061). - Zak Seidov, Jan 26 2006
Also primes which are of the form TriangularNumber(n) + TriangularNumber(n+2): 7 = 1+6, 13 = 3+10, 31 = 10+21, 43 = 15+28, 73 = 28+45, ... - Vladimir Joseph Stephan Orlovsky, Apr 03 2009
It is not known whether there are infinitely many primes of the form n^2+n+1. See Rose reference. - Daniel Tisdale, Jun 27 2009
These numbers when >= 7 are prime repunits 111_n in a base n >= 2, so except for 3, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", Sections V.4 - V.5.) A002383 is generated by A002384 which lists the bases n of 111_n. A002383 = A053183 Union A185632. - Bernard Schott, Dec 22 2012
Conjecture: the set of these numbers, except 3, is the intersection of sets A085104 and A059055. See A225148. - Thomas Ordowski, May 02 2013
For a(n)>13, the fractional part of square root of a(n) starts with digit 5 (see A034101). - Charles Kusniec, Sep 06 2022

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
  • H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A237037, A237038, A237039, A237040 (from semiprimes of form n^3 + 1).
See also A034101.

Programs

  • Magma
    [ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
    
  • Maple
    select(isprime, [j^2+j+1$j=1..200])[];  # Alois P. Heinz, Apr 20 2022
  • Mathematica
    Select[Table[n^2+n+1, {n,250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    list(lim)=select(n->isprime(n),vector((sqrt(4*lim-3)-1)\2,k,k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022

Formula

a(n) = A002384(n)^2 + A002384(n) + 1 = (A088503(n-1)^2 + 3)/4 = (A110284(n) + 3)/4. - Ray Chandler, Sep 07 2005

Extensions

Extended by Ray Chandler, Sep 07 2005

A343774 Primes of the form (c^k+1)/(c+1) not having a representation in the form (b^q-1)/(b-1), where b, c > 1 and k, q > 2.

Original entry on oeis.org

3, 11, 61, 521, 547, 683, 2731, 9091, 13421, 19141, 43691, 61681, 152381, 174763, 185641, 224071, 398581, 909091, 1151041, 1623931, 1824841, 2031671, 2796203, 3341101, 4778021, 5200081, 7027567, 8987221, 10678711, 15790321, 22796593, 25058741, 31224301, 32222107
Offset: 1

Views

Author

Bernard Schott, Apr 29 2021

Keywords

Comments

The exponents k, q are necessarily primes.
Equivalently: primes of the form (c^k+1)/(c+1) that are not Brazilian: intersection of A059055 and A220627.
Except for 3 where k = 3, all the terms of this sequence are of the form (c^k+1)/(c+1) with k prime >= 5.
The only known prime of this form with k prime >= 5 that is not present is 43 = (2^7+1)/(2+1) because also 43 = (7^3+1)/(7+1) = (6^3-1)/(6-1) = 111_6, so 43 belongs to A002383.

Examples

			3 = (2^3+1)/(2+1) is not Brazilian, hence 3 is a term.
11 = (2^5+1)/(2+1) is not Brazilian, hence 11 is a term.
547 = (3^7+1)/(3+1) is not Brazilian, hence 547 is a term.
9091 = (10^5+1)/(10+1) is not Brazilian, hence 9091 is a term.
		

Crossrefs

Primes of the form (b^k-1)/(b-1) = A085104 (Brazilian primes).
Primes of the form (c^q+1)/(c+1) = A059055.
Primes of the form (b^k-1)/(b-1) and (c^q+1)/(c+1): A002383 \ {3} is a subsequence, but, maybe the intersection (conjecture).
Primes of the form (b^k-1)/(b-1) but not (c^q+1)/(c+1) = A225148.
Primes of the form (c^q+1)/(c+1) but not (b^k-1)/(b-1) = this sequence.
Primes neither of the form (c^q+1)/(c+1) nor (b^k-1)/(b-1) = A343775.

Programs

  • PARI
    isc(p) = for (b=2, p, my(k=3); while ((x=(b^k+1)/(b+1)) <= p, if (x == p, return (1)); k = nextprime(k+1); ); );
    isnotb(p) = for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0)); ); return (1);
    isok(p) = isprime(p) && isc(p) && isnotb(p); \\ Michel Marcus, May 01 2021

Extensions

More terms from Michel Marcus, Apr 30 2021

A343775 Primes that are neither of the form (c^q+1)/(c+1) and nor of the form (b^k-1)/(b-1) for any b, c > 1 and k, q primes > 2.

Original entry on oeis.org

2, 5, 17, 19, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367
Offset: 1

Views

Author

Bernard Schott, Apr 29 2021

Keywords

Comments

Equivalently, non-Brazilian primes that are not of the form (c^q+1)/(c+1) for some c > 1, q prime > 2.
Equals A220627 \ A059055.

Crossrefs

Primes of the form (b^k-1)/(b-1) = A085104 (Brazilian primes).
Primes of the form (c^q+1)/(c+1) = A059055.
Primes of the form (b^k-1)/(b-1) and also (c^q+1)/(c+1): A002383 \ {3} is a subsequence, but, maybe the intersection (conjecture).
Primes of the form (b^k-1)/(b-1) but not (c^q+1)/(c+1) = A225148.
Primes of the form (c^q+1)/(c+1) but not (b^k-1)/(b-1) = A343774.
Primes neither of the form (c^q+1)/(c+1) nor (b^k-1)/(b-1) = this sequence.

Programs

  • PARI
    isc(p) = for (b=2, p, my(k=3); while ((x=(b^k+1)/(b+1)) <= p, if (x == p, return (1)); k = nextprime(k+1); ); );
    isnotb(p) = for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0)); ); return (1);
    isok(p) = isprime(p) && !isc(p) && isnotb(p); \\ Michel Marcus, May 01 2021

A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.

Original entry on oeis.org

3, 3, 1, 7, 5, 4, 4, 6, 6
Offset: 0

Views

Author

Bernard Schott, Mar 08 2019

Keywords

Comments

The name "constant of Brazilian primes" is used in the article "Les nombres brésiliens" in link, théorème 4, page 36. Brazilian primes are in A085104.
Let S(k) be the sum of reciprocals of Brazilian primes < k. These values below come from different calculations by Jon, Michel, Daniel and Davis.
q S(10^q)
== ========================
1 0.1428571428571428571... (= 1/7)
2 0.2889927283868234859...
3 0.3229022355626914481...
4 0.3295236806353669357...
5 0.3312171311946179843...
6 0.3316038696349217289...
7 0.3317139158654747333...
8 0.3317434191078170412...
9 0.3317513267394988538...
10 0.3317535651668937256...
11 0.3317542057931842329...
12 0.3317543906772274268...
13 0.3317544444033188051...
14 0.3317544601136967527...
15 0.3317544647354485208...
16 0.3317544661014868080...
17 0.3317544665073451951...
18 0.3317544666282877863...
19 0.3317544666644601817...
20 0.3317544666753095766...
According to the Goormaghtigh conjecture, there are only two Brazilian primes which are twice Brazilian: 31 = (111)_5 = (11111)_2 and 8191 = (111)_90 = (1111111111111)_2. The reciprocals of these two numbers are counted only once in the sum.

Examples

			1/7 + 1/13 + 1/31 + 1/43 + 1/73 + 1/127 + 1/157 + ... = 0.33175...
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 175.

Crossrefs

Cf. A085104 (Brazilian primes), A002383 (Brazilian primes (111)_b), A225148 (Brazilian primes of the form (b^q-1)/(b-1) with q prime >= 5).
Cf. A173898 (sum of the reciprocals of the Mersenne primes), A065421 (Brun's constant).

Programs

  • PARI
    brazil(N, L=List())=forprime(K=3, #binary(N+1)-1, for(n=2, sqrtnint(N-1, K-1), if(isprime((n^K-1)/(n-1)),listput(L, (n^K-1)/(n-1))))); Set(L);
    brazilcons(lim,nbd) = r=brazil(10^lim); x=sum(M=1, #r, 1./r[M]);for(n=1, nbd, print1(floor(x*10^n)%10, ", "));\\ Davis Smith, Mar 10 2019
    
  • PARI
    cons(lim)=my(v=List(), t, k); for(n=2, sqrt(lim), t=1+n; k=1; while((t+=n^k++)<=lim, if(isprime(t), listput(v, t)))); v = vecsort(Vec(v), , 8); sum(k=1, #v, 1./v[k]); \\ Michel Marcus, Mar 11 2019

Formula

Equals Sum_{n>=1} 1/A085104(n).
Showing 1-4 of 4 results.