cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224274 a(n) = binomial(4*n,n)/4.

Original entry on oeis.org

1, 7, 55, 455, 3876, 33649, 296010, 2629575, 23535820, 211915132, 1917334783, 17417133617, 158753389900, 1451182990950, 13298522298180, 122131734269895, 1123787895356412, 10358022441395860, 95615237915961100, 883829035553043580, 8179808679272664720, 75788358475481302185
Offset: 1

Views

Author

Gary Detlefs, Apr 02 2013

Keywords

Comments

In general, binomial(k*n,n)/k = binomial(k*n-1,n-1).
Sequences in the OEIS related to this identity are:
. C(2n,n) = A000984, C(2n,n)/2 = A001700;
. C(3n,n) = A005809, C(3n,n)/3 = A025174;
. C(4n,n) = A005810, C(4n,n)/4 = a(n);
. C(5n,n) = A001449, C(5n,n)/5 = A163456;
. C(6n,n) = A004355, C(6n,n)/6 is not in the OEIS.
Conjecture: a(n) == 1 (mod n^3) iff n is an odd prime.
It is known that a(p) == 1(mod p^3) for prime p >= 3. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015

Examples

			For n=2, binomial(4*n,n) = binomial(8,2) = 8*7/2 = 28, so a(2) = 28/4 = 7. - _Michael B. Porter_, Jul 12 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(4*n,n) div 4: n in [1..25]]; // Vincenzo Librandi, Jun 03 2015
  • Maple
    seq(binomial(4*n,n)/4, n=1..17);
  • Mathematica
    Table[Binomial[4 n, n]/4, {n, 30}] (* Vincenzo Librandi, Jun 03 2015 *)
  • PARI
    a(n) = binomial(4*n,n)/4; /* Joerg Arndt, Apr 02 2013 */
    

Formula

a(n) = binomial(4*n,n)/4 = A005810(n)/4.
a(n) = binomial(4*n-1,n-1).
G.f.: A(x) = B'(x)/B(x), where B(x) = 1 + x*B(x)^4 is g.f. of A002293. - Vladimir Kruchinin, Aug 13 2015
From Peter Bala, Oct 08 2015: (Start)
a(n) = 1/2*[x^n] (C(x)^2)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 22*x^3 + ... is the o.g.f. for A002293.
exp( 2*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 9*x^2 + 52*x^3 + ... is the o.g.f. for A069271. (End)
From Peter Bala, Nov 04 2015: (Start)
With an offset of 1, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A004331 (k = 4). (End)
a(n) = 1/5*[x^n] (1 + x)/(1 - x)^(3*n + 1) = 1/5*[x^n]( 1/C(-x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A227726. - Peter Bala, Jul 12 2016
a(n) ~ 2^(8*n-3/2)*3^(-3*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
O.g.f.: A(x) = f(x)/(1 - 3*f(x)), where f(x) = series reversion (x/(1 + x)^4) = x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ... is the o.g.f. of A002293 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/3)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+3)*n+k-1,k) = C(4*n,n)/4 and (1/4)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-4)*n+k-1,k) = C(4*n,n)/4, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(5*n-k-1,2*n-k)*binomial(3*n+k-1,k) = binomial(4*n,n)/4. - Peter Bala, Mar 09 2022
a(n) = [x^n] G(x)^n, where G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... is the g.f. of A001764. - Peter Bala, Oct 17 2024

A163456 a(n) = binomial(5*n,n)/5.

Original entry on oeis.org

1, 9, 91, 969, 10626, 118755, 1344904, 15380937, 177232627, 2054455634, 23930713170, 279871768995, 3284214703056, 38650751381832, 456002537343216, 5391644226101705, 63871405575418665, 757929628541719755
Offset: 1

Views

Author

Zak Seidov, Jul 28 2009

Keywords

Comments

For prime p, a(p) == 1 (mod p). - Gary Detlefs, Aug 03 2013
In fact, a(p) == 1 (mod p^3) for prime p >= 5. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015
From Robert Israel, Jul 12 2016: (Start)
a(p+1) == 5 (mod p) for primes p >= 5.
a(p^(k+1)) == a(p^k) mod p^(3(k+1)) for primes p >= 5. (End)

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.

Crossrefs

Programs

  • Maple
    seq(binomial(5*n,n)/5, n=1..20); # Robert Israel, Jul 12 2016
  • Mathematica
    Array[Binomial[5 #, #]/5 &, {18}] (* Michael De Vlieger, Oct 09 2015 *)
  • PARI
    a(n) = binomial(5*n,n)/5 \\ Altug Alkan, Oct 09 2015

Formula

a(n) = (5*n-1)!/(4*n!*(4*n-1)!) = A001449(n)/5 = A163455(n)/4.
a(n) = binomial(5*n,n)/5. - Gary Detlefs, Aug 03 2013
From Peter Bala, Oct 08 2015: (Start)
a(n) = (1/3)*[x^n] (C(x)^3)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A224274.
exp( 3*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 18*x^2 + 136*x^3 + ... is the o.g.f. for A118970. (End)
From Peter Bala,Jul 12 2016: (Start)
a(n) = 1/6*[x^n] (1 + x)/(1 - x)^(4*n + 1).
a(n) = 1/6*[x^n] ( 1/C(-x)^6 )^n. Cf. A227726. (End)
a(n) ~ 2^(-8*n-3/2)*5^(5*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
From Robert Israel, Jul 12 2016: (Start)
G.f.: x*hypergeom([1, 6/5, 7/5, 8/5, 9/5], [5/4, 3/2, 7/4, 2], (3125/256)*x).
a(n) = 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)/(8*n*(4*n-3)*(2*n-1)*(4*n-1)). (End)
O.g.f.: f(x)/(1 - 4*f(x)), where f(x) = series reversion (x/(1 + x)^5) = x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + ... is the o.g.f. of A002294 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/4)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+4)*n+k-1,k) = C(5*n,n)/5 and (1/5)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-5)*n+k-1,k) = C(5*n,n)/5, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/4)*Sum_{k = 0..2*n} (-1)^k*binomial(6*n-k-1,2*n-k)*binomial(4*n+k-1,k) = binomial(5*n,n)/5, for n >= 1. - Peter Bala, Mar 09 2022
a(n) = (1/2)* [x*n] F(x)^(2*n) = [x^n] G(x)^n for n >= 1, where F(x) = Sum_{k >= 0} 1/(2*k + 1)*binomial(3*k,k)*x^k is the o.g.f. of A001764 and G(x) = Sum_{k >= 0} 1/(3*k + 1)*binomial(4*k,k)*x^k is the o.g.f. of A002293 (apply Concrete Mathematics, equation 5.60, p. 201). - Peter Bala, Apr 26 2023

Extensions

Renamed by Peter Bala, Oct 08 2015

A052227 a(n) = (4*n+1)*binomial(3*n,n)/(2*n+1).

Original entry on oeis.org

1, 5, 27, 156, 935, 5733, 35700, 224808, 1427679, 9126975, 58659315, 378658800, 2453288292, 15944020316, 103897691640, 678610095504, 4441369072335, 29120107628115, 191233066114545, 1257635016353100
Offset: 0

Views

Author

Barry E. Williams, Jan 29 2000

Keywords

Comments

T(2n,n) for A111125. - Paul Barry, Apr 19 2007
a(n) = A182584(2*n+1). - Reinhard Zumkeller, May 06 2012

Crossrefs

Programs

  • Haskell
    a052227 n = (a016813 n) * (a005809 n) `div` (a005408 n)
    -- Reinhard Zumkeller, May 06 2012
    
  • Magma
    [(4*n+1)*Binomial(3*n,n)/(2*n+1) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
    
  • Mathematica
    Table[(4n + 1)Binomial[3n, n]/(2n + 1), {n, 0, 30}] (* Harvey P. Dale, Jan 31 2011 *)
  • Maxima
    makelist(binomial(3*n,n)*(4*n+1)/(2*n+1),n,0,100); /* Emanuele Munarini, Jun 06 2011 */
    
  • PARI
    {a(n)=binomial(3*n+1, n)+binomial(3*n, n-1)}  /* Paul D. Hanna, Jul 22 2013 */

Formula

G.f.: 4*x*F(4/3,5/3;5/2;27*x/4) + 2*sin(1/3*arcsin((3*sqrt(3*x))/2))/sqrt(3*x), where F(a;b;z) is a hypergeometric series. - Emanuele Munarini, Jun 06 2011
G.f.: (g+1)/((3*g-1)*(g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Conjecture: 8*n*(2*n+1)*a(n) +6*(-8*n^2-25*n+13)*a(n-1) -45*(3*n-4)*(3*n-5)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
a(n) = binomial(3*n+1, n) + binomial(3*n, n-1) for n>=0. - Paul D. Hanna, Jul 22 2013
G.f.: G(x)*(2*G(x) - 1) / (3 - 2*G(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. - Paul D. Hanna, Jul 22 2013
a(n) is the coefficient of [x^n] in (1+x)/(1-x)^(2n+2) and forms the main diagonal in the following table of coefficients:
(1+x)/(1-x)^2: [1, 3, 5, 7, 9, 11, 13, 15, 17, ...];
(1+x)/(1-x)^4: [1, 5, 14, 30, 55, 91, 140, 204, 285, ...];
(1+x)/(1-x)^6: [1, 7, 27, 77, 182, 378, 714, 1254, ...];
(1+x)/(1-x)^8: [1, 9, 44, 156, 450, 1122, 2508, 5148, ...];
(1+x)/(1-x)^10:[1, 11, 65, 275, 935, 2717, 7007, 16445, ...];
(1+x)/(1-x)^12:[1, 13, 90, 442, 1729, 5733, 16744, 44200, ...];
(1+x)/(1-x)^14:[1, 15, 119, 665, 2940, 10948, 35700, 104652, ...];
(1+x)/(1-x)^16:[1, 17, 152, 952, 4692, 19380, 69768, 224808, ...]; ... - Paul D. Hanna, Jul 22 2013

Extensions

More terms from Harvey P. Dale, Jan 31 2011
Showing 1-3 of 3 results.