cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A328912 Continued fraction expansion of log_2((sqrt(5)+1)/2) = 0.6942419... = A242208.

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, 2, 1, 11, 1, 1, 134, 2, 2, 2, 1, 4, 1, 1, 3, 1, 7, 1, 13, 1, 3, 5, 1, 1, 1, 8, 1, 3, 4, 1, 1, 1, 3, 4, 1, 3, 1, 4, 1, 4, 1, 3, 40, 1, 1, 5, 4, 3, 3, 1, 3, 1, 2, 6, 1, 1, 2, 28, 11, 1, 71, 2, 1, 4, 8, 5, 1, 2, 1, 1, 14
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Comments

This number is also the solution to 1 + 2^x = 4^x, or 1 + 1/2^x = 2^x, which clarifies the relation to Phi = (sqrt(5)+1)/2, solution to 1 + 1/x = x.

Examples

			log_2((sqrt(5)+1)/2) = 0.6942419... = 0 + 1/(1 + 1/(2 + 1/(3 + 1/(1 + ...))))
		

Crossrefs

Cf. A242208, A001622 (decimals of Phi), A000012 (cont. frac. of Phi).

Programs

  • Mathematica
    ContinuedFraction[Log2[GoldenRatio], 100] (* Paolo Xausa, Mar 07 2024 *)
  • PARI
    localprec(1000); contfrac(log(sqrt(5)+1)/log(2)-1)

Extensions

Some terms corrected by Paolo Xausa, Mar 07 2024

A011373 Number of 1's in binary expansion of Fibonacci(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 3, 3, 2, 5, 4, 2, 5, 6, 4, 8, 7, 4, 5, 8, 6, 8, 11, 6, 6, 9, 11, 11, 12, 8, 11, 9, 13, 12, 11, 12, 14, 10, 12, 16, 17, 14, 16, 18, 15, 21, 13, 12, 18, 18, 17, 17, 17, 16, 22, 21, 16, 24, 20, 16, 19, 26, 23, 20, 25, 19, 26, 15, 23, 23, 22, 25, 27, 24, 23, 23, 22
Offset: 0

Views

Author

Keywords

Examples

			a(8) = 3 because Fibonacci(8) = 21, which in binary is 11001 and that has 3 on bits.
a(9) = 2 because Fibonacci(9) = 34, which in binary is 100010 and that only has 2 on bits.
		

Crossrefs

Programs

  • Maple
    A000120 := proc(n) add(d,d=convert(n,base,2)) ; end proc:
    A011373 := proc(n) A000120(combinat[fibonacci](n)) ; end proc:
    seq(A011373(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    DigitCount[#, 2, 1]&/@Fibonacci[Range[0, 79]] (* Harvey P. Dale, Mar 14 2011 *)
    Table[Plus@@IntegerDigits[Fibonacci[n], 2], {n, 0, 79}]
  • PARI
    a(n)=hammingweight(fibonacci(n)) \\ Charles R Greathouse IV, Mar 02 2014
    
  • Python
    from sympy import fibonacci
    def a(n): return int(fibonacci(n)).bit_count() # David Radcliffe, Jul 03 2025
  • Scala
    def fibonacci(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 0, 1)
    } // Based on tail recursion by Dario Carrasquel
    (0 to 79).map(fibonacci().bitCount) // _Alonso del Arte, Apr 13 2019
    

Formula

a(n) = A000120(A000045(n)). - Michel Marcus, Dec 27 2014
a(n) = [x^Fibonacci(n)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
Conjecture: Limit_{n->oo} a(n)/n = log_2(phi)/2 = A242208/2 = 0.3471209568... . - Amiram Eldar, May 13 2022
Limit_{n->oo} a(n) = oo by a result of C. L. Stewart, linked above. - David Radcliffe, Jul 03 2025

A328900 Decimal expansion of s = 1.507126591638653..., solution to 2^s + 3^s = 4^s.

Original entry on oeis.org

1, 5, 0, 7, 1, 2, 6, 5, 9, 1, 6, 3, 8, 6, 5, 3, 1, 3, 3, 9, 8, 6, 8, 8, 3, 3, 6, 0, 8, 3, 8, 6, 3, 1, 1, 6, 4, 3, 7, 3, 9, 9, 4, 0, 9, 4, 4, 8, 5, 6, 5, 6, 8, 9, 6, 6, 7, 5, 3, 6, 4, 3, 5, 9, 4, 4, 3, 8, 1, 4, 7, 3, 3, 8, 0, 4, 8, 5, 1, 5, 7, 2, 5, 9, 2, 2, 8
Offset: 1

Views

Author

M. F. Hasler, on suggestion from Artur Jasinski, Oct 30 2019

Keywords

Comments

Equivalently, solution to 1/(1 - 2^-s) = 1 + 2^-s + 3^-s, related to partial sums and Euler product approximating zeta(s).
When a + b = c, then the only solution to a^x + b^x = c^x is trivially x = 1. The solution to 1 + 2^x = 4^x is log_2(Phi) = A242208.
See A328904, A328905 for (a, b, c) = (1, 3, 5) and (1, 2, 5).

Examples

			1.5071265916386531339868833608386311643739940944856568966753643594438147338...
		

Crossrefs

Cf. A328913 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328912 (continued fraction thereof).
Cf. A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328906 (1 + 2^x = 6^x), A328907 (1 + 3^x = 6^x).

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[2^x + 3^x == 4^x, {x, 1.5}, WorkingPrecision -> 100]][[1]] (* Artur Jasinski, Oct 30 2019 *)
  • PARI
    solve(s=1,2,2^s+3^s-4^s) \\ use e.g. \p200 to get more digits

A328904 Decimal expansion of x = 0.7271601514124259243... solution to 1 + 3^x = 5^x.

Original entry on oeis.org

7, 2, 7, 1, 6, 0, 1, 5, 1, 4, 1, 2, 4, 2, 5, 9, 2, 4, 3, 0, 4, 4, 7, 0, 8, 4, 4, 0, 0, 9, 5, 2, 1, 7, 6, 9, 3, 5, 4, 5, 8, 9, 0, 4, 5, 5, 6, 4, 5, 8, 3, 3, 0, 4, 1, 4, 2, 5, 7, 7, 7, 6, 4, 1, 7, 5, 2, 9, 0, 8, 6, 8, 4, 3, 2, 3, 0, 5, 7, 7, 3, 3, 5, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Examples

			0.7271601514124259243044708440095217693545890455645833041425777641752908684323...
		

Crossrefs

Cf. A329334 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328905 (1 + 2^x = 5^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 3^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+3^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019

A328905 Decimal expansion of the solution x = 0.56389552425993647949... to 1 + 2^x = 5^x.

Original entry on oeis.org

5, 6, 3, 8, 9, 5, 5, 2, 4, 2, 5, 9, 9, 3, 6, 4, 7, 9, 4, 9, 0, 3, 9, 2, 9, 4, 5, 9, 3, 7, 9, 5, 6, 5, 6, 5, 5, 1, 5, 2, 1, 1, 7, 3, 0, 5, 0, 9, 9, 5, 5, 2, 9, 8, 5, 9, 2, 8, 0, 8, 3, 8, 0, 1, 2, 0, 4, 6, 6, 2, 0, 0, 5, 2, 2, 8, 1, 9, 7, 3, 5, 5, 0, 4, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Examples

			0.5638955242599364794903929459379565655152117305099552985928083801204662005228...
		

Crossrefs

Cf. A329334 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 2^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+2^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019

A328907 Decimal expansion of the solution x = 0.6009668516... to 1 + 3^x = 6^x.

Original entry on oeis.org

6, 0, 0, 9, 6, 6, 8, 5, 1, 6, 1, 3, 6, 7, 5, 4, 8, 5, 7, 1, 5, 7, 0, 5, 2, 6, 4, 6, 3, 1, 8, 3, 8, 1, 2, 0, 6, 7, 7, 2, 2, 7, 9, 9, 2, 1, 3, 3, 0, 5, 1, 3, 5, 8, 8, 5, 0, 2, 6, 3, 9, 4, 0, 1, 9, 1, 6, 9, 2, 1, 2, 0, 4, 0, 9, 8, 0, 5, 1, 3, 9, 9, 6, 8, 5, 2, 3, 4, 8, 3, 7, 0, 2, 5, 3, 1, 3, 9, 8
Offset: 0

Views

Author

M. F. Hasler, Nov 11 2019

Keywords

Examples

			0.6009668516136754857157052646318381206772279921330513588502639401916921204...
		

Crossrefs

Cf. A329337 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328906 (1 + 2^x = 6^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 3^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+3^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019

A174868 Partial sums of Stern's diatomic series A002487.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344, 353, 358, 364, 365, 372, 378, 389, 394, 408, 417, 430, 434, 449, 460, 478, 485, 502, 512, 525, 528, 542, 553, 572, 580, 601, 614, 632, 637, 654, 666, 685
Offset: 0

Views

Author

Jonathan Vos Post, Dec 01 2010

Keywords

Comments

After the initial 0, identical to A007729.

Examples

			a(16) = 0 + 1 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 4 + 3 + 5 + 2 + 5 + 3 + 4 + 1 = 41.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 2*a[n/2] + a[n/2 - 1], 2*a[(n - 1)/2] + a[(n + 1)/2]]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, May 18 2023 *)
  • Python
    from itertools import accumulate, count, islice
    from functools import reduce
    def A174868_gen(): # generator of terms
        return accumulate((sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1)),initial=0)
    A174868_list = list(islice(A174868_gen(),30)) # Chai Wah Wu, May 07 2023

Formula

a(n) = Sum_{i=0..n} A002487(i).
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
a(2k) = 2*a(k) + a(k-1); a(2k+1) = 2*a(k) + a(k+1). - Michael J. Collins, Dec 25 2018
a(n) = n^log_2(3) + Psi_D(log_2(n)) + O(n^log_2(phi)), where phi is the golden ratio (A001622) and Psi_D is a 1-periodic continuous function which is Hölder continuous with any exponent smaller than log_2(3/phi) (Heuberger et al., 2022). - Amiram Eldar, May 18 2023

A241002 Decimal expansion of the asymptotic growth rate of the number of odd coefficients in Pascal trinomial triangle mod 2, where coefficients are from (1+x+x^4)^n.

Original entry on oeis.org

7, 3, 6, 2, 1, 1, 5, 5, 5, 7, 3, 9, 3, 0, 7, 9, 3, 1, 6, 5, 4, 9, 2, 0, 9, 3, 8, 9, 2, 4, 5, 8, 0, 9, 8, 3, 1, 8, 5, 0, 0, 5, 7, 7, 6, 4, 8, 4, 5, 9, 3, 6, 7, 7, 3, 9, 7, 9, 4, 6, 9, 1, 6, 8, 5, 7, 9, 4, 3, 9, 4, 2, 9, 8, 1, 1, 4, 3, 2, 3, 5, 8, 1, 2, 9, 4, 4, 6, 8, 2, 4, 4, 2, 9, 0, 1, 1, 1, 9, 8, 2, 2, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 13 2014

Keywords

Examples

			0.7362115557393079316549209389245809831850057764845936773979469...
		

Crossrefs

Cf. A242208 (1+x+x^2)^n, A242021 (1+x+x^3)^n, A242022 (1+x+x^2+x^3+x^4)^n.

Programs

  • Mathematica
    mu = Sort[Table[Root[x^5 - 3*x^4 - 2*x^2 - 8*x + 8, x, n], {n, 1, 5}], N[Abs[#1]] < N[Abs[#2]] &] // Last; RealDigits[Log[mu]/Log[2] - 1, 10, 104] // First

Formula

log(abs(mu))/log(2) - 1, where mu is the root of x^5 - 3*x^4 - 2*x^2 - 8*x + 8 with maximum modulus.

A328906 Decimal expansion of the solution x = 0.4895363211996... to 1 + 2^x = 6^x.

Original entry on oeis.org

4, 8, 9, 5, 3, 6, 3, 2, 1, 1, 9, 9, 6, 4, 9, 4, 8, 8, 6, 8, 9, 8, 7, 5, 3, 1, 6, 8, 2, 2, 6, 5, 0, 1, 8, 9, 4, 0, 3, 5, 8, 6, 5, 1, 5, 7, 7, 1, 9, 1, 2, 1, 2, 7, 8, 4, 6, 4, 3, 6, 6, 7, 8, 6, 1, 9, 2, 5, 5, 6, 2, 8, 2, 5, 5, 8, 6, 6, 8, 4, 4, 8, 2, 3, 5, 0, 9, 7, 2, 4, 0, 4, 3, 3, 9, 0, 0, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Nov 11 2019

Keywords

Examples

			0.489536321199649488689875316822650189403586515771912127846436678619255628...
		

Crossrefs

Cf. A329336 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328907 (1 + 3^x = 6^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 2^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+2^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019

A329334 Continued fraction of A328904 = 0.7271601514124259..., solution to 1 + 3^x = 5^x.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 72, 1, 3, 2, 6, 1, 1, 2, 45, 1, 5, 13, 73, 1, 2, 1, 9, 1, 1, 1, 3, 2, 3, 3, 2, 1, 2, 2, 1, 1, 19, 1, 1, 1, 1, 5, 1, 5, 2, 4, 3, 1, 6, 1, 1, 2, 1, 9, 8, 1, 4, 1, 1, 20, 1, 1, 2, 1, 5, 2, 2, 1, 2, 5, 1, 56, 1, 1, 1, 6, 127, 1, 1, 7, 2, 7, 1, 6, 1, 1, 3, 1, 54, 1, 1, 3, 2, 1, 1, 3
Offset: 0

Views

Author

M. F. Hasler, Nov 11 2019

Keywords

Examples

			0.7271601514124259... = 0 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + 1/(1  + 1/(72 + 1/...))))))
		

Crossrefs

Cf. A328912 (cont. frac. of A242208: 1 + 2^x = 4^x), A328913 (cont. frac. of A328900: 2^x + 3^x = 4^x), A329337 (cont. frac. of A328907: 1 + 3^x = 6^x).

Programs

  • PARI
    contfrac(c=solve(x=0,1, 1+3^x-5^x))[^-1] \\ discarding possibly incorrect last term. Use e.g. \p999 to get more terms. - M. F. Hasler, Oct 31 2019
Showing 1-10 of 17 results. Next