Original entry on oeis.org
4, 20, 52, 112, 196, 328, 492, 716, 992, 1340, 1736, 2244, 2808, 3468, 4224, 5104, 6056, 7164, 8352, 9708, 11192, 12820, 14544, 16508, 18596, 20852, 23268, 25908, 28668, 31716, 34892, 38320, 41940, 45776, 49804, 54196, 58740, 63524, 68532, 73900
Offset: 1
From _Omar E. Pol_, Aug 29 2015: (Start)
Illustration of the top view of the stepped pyramid with 16 levels. The pyramid is formed of 5104 unit cubes:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593 and A245092.
(End)
Cf.
A000203,
A024916,
A046092,
A008586,
A175254,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239050,
A239660,
A239931,
A239932,
A239933,
A239934,
A243980,
A245092,
A262626,
A340793.
-
[4*(&+[(n-k+1)*DivisorSigma(1,k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Apr 07 2019
-
a[n_] := 4 Sum[(n - k + 1) DivisorSigma[1, k], {k, n}]; Array[a, 40] (* Robert G. Wilson v, Aug 06 2018 *)
Nest[Accumulate,4*DivisorSigma[1,Range[50]],2] (* Harvey P. Dale, Sep 07 2022 *)
-
a(n) = 4*sum(k=1, n, sigma(k)*(n-k+1)); \\ Michel Marcus, Aug 07 2018
-
from math import isqrt
def A244050(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1))<<1)//3 # Chai Wah Wu, Oct 22 2023
-
[4*sum(sigma(k)*(n-k+1) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Apr 07 2019
A245092
The even numbers (A005843) and the values of sigma function (A000203) interleaved.
Original entry on oeis.org
0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0
Illustration of initial terms:
----------------------------------------------------------------------
a(n) Diagram
----------------------------------------------------------------------
0 _
1 |_|\ _
2 \ _| |\ _
3 |_ _| | |\ _
4 \ _ _|_| | |\ _
4 |_ _| _| | | |\ _
6 \ _ _| _| | | | |\ _
7 |_ _ _| _|_| | | | |\ _
8 \ _ _ _| _ _| | | | | |\ _
6 |_ _ _| | _| | | | | | |\ _
10 \ _ _ _| _| _|_| | | | | | |\ _
12 |_ _ _ _| _| _ _| | | | | | | |\ _
12 \ _ _ _ _| _| _ _| | | | | | | | |\ _
8 |_ _ _ _| | _| _ _|_| | | | | | | | |\ _
14 \ _ _ _ _| | _| | _ _| | | | | | | | | |\ _
15 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | |\ _
16 \ _ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |\
13 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | | |
18 \ _ _ _ _ _| | _| _| _ _| | | | | | | | | |
18 |_ _ _ _ _ _| | _| | _ _|_| | | | | | | |
20 \ _ _ _ _ _ _| | _| | _ _ _| | | | | | |
12 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | | |
22 \ _ _ _ _ _ _| | _ _| _|_| _ _ _|_| | | |
28 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| | |
24 \ _ _ _ _ _ _ _| | _| | _| | _ _ _| |
14 |_ _ _ _ _ _ _| | | _| _| _| | _ _ _|
26 \ _ _ _ _ _ _ _| | |_ _| _| _| |
24 |_ _ _ _ _ _ _ _| | _ _| _| _|
28 \ _ _ _ _ _ _ _ _| | _ _| _|
24 |_ _ _ _ _ _ _ _| | | _ _|
30 \ _ _ _ _ _ _ _ _| | |
31 |_ _ _ _ _ _ _ _ _| |
32 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level _ _
1 _| | |_
2 _| _|_ |_
3 _| | | | |_
4 _| _| | |_ |_
5 _| | _|_ | |_
6 _| _| | | | |_ |_
7 _| | | | | | |_
8 _| _| _| | |_ |_ |_
9 _| | | _|_ | | |_
10 _| _| | | | | | |_ |_
11 _| | _| | | | |_ | |_
12 _| _| | | | | | |_ |_
13 _| | | _| | |_ | | |_
14 _| _| _| | _|_ | |_ |_ |_
15 _| | | | | | | | | | |_
16 | | | | | | | | | | |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n A000203 A237270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 1 = 1 |_| | | | | | | | | | | | | | | |
2 3 = 3 |_ _|_| | | | | | | | | | | | | |
3 4 = 2 + 2 |_ _| _|_| | | | | | | | | | | |
4 7 = 7 |_ _ _| _|_| | | | | | | | | |
5 6 = 3 + 3 |_ _ _| _| _ _|_| | | | | | | |
6 12 = 12 |_ _ _ _| _| | _ _|_| | | | | |
7 8 = 4 + 4 |_ _ _ _| |_ _|_| _ _|_| | | |
8 15 = 15 |_ _ _ _ _| _| | _ _ _|_| |
9 13 = 5 + 3 + 5 |_ _ _ _ _| | _|_| | _ _ _|
10 18 = 9 + 9 |_ _ _ _ _ _| _ _| _| |
11 12 = 6 + 6 |_ _ _ _ _ _| | _| _| _|
12 28 = 28 |_ _ _ _ _ _ _| |_ _| _|
13 14 = 7 + 7 |_ _ _ _ _ _ _| | _ _|
14 24 = 12 + 12 |_ _ _ _ _ _ _ _| |
15 24 = 8 + 8 + 8 |_ _ _ _ _ _ _ _| |
16 31 = 31 |_ _ _ _ _ _ _ _ _|
... (End)
Cf.
A000203,
A004125,
A024916,
A005843,
A175254,
A196020,
A224880,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244370,
A244371,
A244970,
A244971,
A245093,
A261350,
A262626,
A277437,
A279387,
A280223,
A280295.
-
Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)
A239050
a(n) = 4*sigma(n).
Original entry on oeis.org
4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1
For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms: _ _ _ _ _ _
. _ _ _ _ _ _ |_|_|_|_|_|_|
. _ _ _ _ _|_|_|_|_|_|_|_ _ _| |_ _
. _ _ _ _ _|_|_|_|_|_ |_|_| |_|_| |_| |_|
. _ _ |_|_|_|_| |_| |_| |_| |_| |_| |_|
. |_|_| |_| |_| |_| |_| |_| |_| |_| |_|
. |_|_| |_|_ _|_| |_| |_| |_| |_| |_| |_|
. |_|_|_|_| |_|_ _ _ _|_| |_|_ _|_| |_| |_|
. |_|_|_|_| |_|_|_ _ _ _|_|_| |_|_ _|_|
. |_|_|_|_|_|_| |_ _ _ _ _ _|
. |_|_|_|_|_|_|
.
n: 1 2 3 4 5
S(n): 1 3 4 7 6
a(n): 4 12 16 28 24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
k times sigma(n), k = 1..10:
A000203,
A074400,
A272027, this sequence,
A274535,
A274536,
A319527,
A319528,
A325299,
A326122.
Cf.
A008438,
A017113,
A062731,
A112610,
A144613,
A193553,
A196020,
A235791,
A236104,
A237270,
A237593,
A239052,
A239053,
A239660,
A239662,
A244050,
A262626.
A244370
Total number of toothpicks after n-th stage in the toothpick structure of the symmetric representation of sigma in the four quadrants.
Original entry on oeis.org
8, 24, 48, 80, 112, 160, 200, 264, 328, 408, 464, 560, 624, 728, 832, 960, 1040, 1184, 1272, 1432, 1576, 1728, 1832, 2024, 2160, 2336, 2512, 2736
Offset: 1
Illustration of the structure after 16 stages (Contains 960 toothpicks):
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Cf.
A000203,
A004125,
A024916,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244371,
A244970,
A244971,
A245092.
a(8) corrected and more terms from
Omar E. Pol, Oct 18 2014
A327329
Twice the sum of all divisors of all positive integers <= n.
Original entry on oeis.org
2, 8, 16, 30, 42, 66, 82, 112, 138, 174, 198, 254, 282, 330, 378, 440, 476, 554, 594, 678, 742, 814, 862, 982, 1044, 1128, 1208, 1320, 1380, 1524, 1588, 1714, 1810, 1918, 2014, 2196, 2272, 2392, 2504, 2684, 2768, 2960, 3048, 3216, 3372, 3516, 3612, 3860, 3974, 4160, 4304, 4500, 4608, 4848, 4992
Offset: 1
Illustration of a(8) = 112 using a symmetric structure constructed with the Dyck path related to partitions described in the 8th row of triangle A237593.
_ _ _ _ _
| |
| |_
| |_ _
| |
| 56 |
| |
| |
_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _|
| |
| |
| |
| 56 |
|_ _ |
|_ |
| |
|_ _ _ _ _|
Cf.
A001105,
A006218,
A013661,
A024916,
A067436,
A222548,
A236104,
A237591,
A237593,
A243980,
A245092,
A262626.
-
Accumulate[2*DivisorSigma[1,Range[60]]] (* Harvey P. Dale, Sep 25 2021 *)
-
a(n) = 2*sum(k=1, n, sigma(k)); \\ Michel Marcus, Dec 20 2021
-
from sympy import divisor_sigma
from itertools import accumulate
def f(, n): return + 2*divisor_sigma(n, 1)
def aupton(terms): return list(accumulate(range(terms+1), f))[1:]
print(aupton(55)) # Michael S. Branicky, Dec 16 2021
-
from math import isqrt
def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023
A340424
Triangle read by rows: T(n,k) = A024916(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 4, 0, 8, 0, 1, 15, 0, 4, 1, 21, 0, 8, 4, 2, 33, 0, 15, 8, 8, 2, 41, 0, 21, 15, 16, 8, 4, 56, 0, 33, 21, 30, 16, 16, 4, 69, 0, 41, 33, 42, 30, 32, 16, 7, 87, 0, 56, 41, 66, 42, 60, 32, 28, 8, 99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12, 127, 0, 87, 69, 112, 82, 132, 84, 105, 64, 48, 14
Offset: 1
Triangle begins:
1;
4, 0;
8, 0, 1;
15, 0, 4, 1;
21, 0, 8, 4, 2;
33, 0, 15, 8, 8, 2;
41, 0, 21, 15, 16 8, 4;
56, 0, 33, 21, 30, 16, 16, 4;
69, 0, 41, 33, 42, 30, 32, 16, 7;
87, 0, 56, 41, 66, 42, 60, 32, 28, 8;
99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 33 = 33
2 0 * 21 = 0
3 1 * 15 = 15
4 1 * 8 = 8
5 2 * 4 = 8
6 2 * 1 = 2
. A024916
--------------------------
The sum of row 6 is 33 + 0 + 15 + 8 + 8 + 2 = 66, equaling A066186(6) = 66.
A244970
Total number of regions after n-th stage in the diagram of the symmetric representation of sigma on the four quadrants.
Original entry on oeis.org
1, 2, 6, 7, 11, 12, 16, 17, 25, 29, 33, 34, 38, 42, 50, 51, 55, 56, 60, 61, 73, 77, 81, 82, 90, 94, 106, 107, 111, 112, 116, 117, 129, 133, 141, 142, 146, 150, 162, 163, 167, 168, 172, 176, 184, 188, 192, 193, 201, 209, 221, 225, 229, 230, 242, 243, 255, 259, 263, 264
Offset: 1
Illustration of the structure after 15 stages (contains 50 regions):
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _
. _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_
. _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_
. | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ |
. _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _
. | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | |
. | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | |
. | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | |
. | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | |
. | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | |
. | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | |
. | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | |
. | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | |
. | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | |
. | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | |
. | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | |
. | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | |
. | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | |
. |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_|
. | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| |
. |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _|
. |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _|
. |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram is also the top view of the stepped pyramid with 15 levels described in A244050. - _Omar E. Pol_, Apr 20 2016
Cf.
A000203,
A004125,
A024916,
A196020,
A235791,
A236104,
A237270,
A237271,
A237590,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244370,
A244371,
A244971,
A245092.
Original entry on oeis.org
4, 16, 28, 56, 68, 120, 132, 192, 228, 296, 308, 440, 452, 536, 612, 736, 748, 920, 932, 1112, 1204, 1320, 1332, 1624, 1676, 1808, 1916, 2144, 2156, 2496, 2508, 2760, 2884, 3048, 3156, 3600, 3612, 3792, 3932, 4336, 4348, 4784, 4796, 5120, 5388, 5600, 5612, 6224, 6292, 6640, 6812, 7184, 7196, 7728, 7868, 8384
Offset: 1
Illustration of initial terms (n = 1..6):
. _ _ _ _ _ _
. _ _ _ _ _| | |_
. _ _ _ _ _| | |_ | | |
. _ _ | | | | _|_ | | _|_ |
. |_|_| |_ _|_ _| |_ _| |_ _| |_ _ _| |_ _ _|
. |_|_| | | | | |_ _| | | |_ _| |
. |_ _|_ _| |_ | _| | | |
. 4 |_ _|_ _| |_ | _|
. 16 |_ _ _|_ _ _|
. 28
. 56
.
. _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _| | |_
. | | | _| | |_
. _ _| | |_ _ | | |
. | _ _|_ _ | | _|_ |
. | | | | | _| |_ |
. |_ _ _| |_ _ _| |_ _ _ _| |_ _ _ _|
. | | | | | |_ _| |
. | |_ _ _ _| | | |_ _| |
. |_ _ | _ _| | | |
. | | | |_ | _|
. |_ _ _|_ _ _| |_ | _|
. |_ _ _ _|_ _ _ _|
. 68
. 120
.
Note that for n >= 2 the structure has a hole (or hollow) in the center.
a(n) is the number of ON cells in the n-th diagram.
-
List([1..1000],n->Sum([1..n],k->8*(Sigma(k)-k+(1/2)))); # Muniru A Asiru, Mar 04 2018
-
with(numtheory): seq(sum(8*(sigma(k)-k+(1/2)),k=1..n),n=1..1000); # Muniru A Asiru, Mar 04 2018
-
f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@Array[f, 56] (* Robert G. Wilson v, Dec 12 2017 *)
-
a(n) = 4*(sum(k=1, n, n\k*k) - sum(k=2, n, n%k)) \\ Iain Fox, Dec 10 2017
-
first(n) = my(res = vector(n)); res[1] = 4; for(x=2, n, res[x] = res[x-1] + 8*(sigma(x) - x + (1/2))); res; \\ Iain Fox, Dec 10 2017
-
from math import isqrt
def A294629(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2<<2 # Chai Wah Wu, Oct 22 2023
Original entry on oeis.org
4, 20, 48, 104, 172, 292, 424, 616, 844, 1140, 1448, 1888, 2340, 2876, 3488, 4224, 4972, 5892, 6824, 7936, 9140, 10460, 11792, 13416, 15092, 16900, 18816, 20960, 23116, 25612, 28120, 30880, 33764, 36812, 39968, 43568, 47180, 50972, 54904, 59240, 63588, 68372, 73168, 78288, 83676, 89276, 94888, 101112
Offset: 1
Illustration of the top view of the pyramid with 16 levels and 4224 unit cubes:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid. For more information about the hidden pattern see A237593 and A245092.
Cf.
A000203,
A002492,
A004125,
A072481,
A237593,
A239050,
A243980,
A244050,
A245092,
A294015,
A294017,
A294628.
-
List([1..50],n->Sum([1..n],m->Sum([1..m],k->8*(Sigma(k)-k+(1/2))))); # Muniru A Asiru, Mar 04 2018
-
with(numtheory): seq(sum(sum(8*(sigma(j)-j+(1/2)),j=1..k),k=1..n),n=1..50); # Muniru A Asiru, Mar 04 2018
-
f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@ Accumulate@ Array[f, 48] (* Robert G. Wilson v, Dec 12 2017 *)
-
from math import isqrt
def A294630(n): return ((((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1, s+1))<<2)-(n*(n+1)*((n<<1)+1)<<1))//3 # Chai Wah Wu, Nov 01 2023
Showing 1-9 of 9 results.
Comments