cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262977 a(n) = binomial(4*n-1,n).

Original entry on oeis.org

1, 3, 21, 165, 1365, 11628, 100947, 888030, 7888725, 70607460, 635745396, 5752004349, 52251400851, 476260169700, 4353548972850, 39895566894540, 366395202809685, 3371363686069236, 31074067324187580, 286845713747883300, 2651487106659130740, 24539426037817994160
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2015

Keywords

Comments

From Gus Wiseman, Sep 28 2022: (Start)
Also the number of integer compositions of 4n with alternating sum 2n, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A348614. The a(12) = 21 compositions are:
(6,2) (1,2,5) (1,1,5,1) (1,1,1,1,4)
(2,2,4) (2,1,4,1) (1,1,2,1,3)
(3,2,3) (3,1,3,1) (1,1,3,1,2)
(4,2,2) (4,1,2,1) (1,1,4,1,1)
(5,2,1) (5,1,1,1) (2,1,1,1,3)
(2,1,2,1,2)
(2,1,3,1,1)
(3,1,1,1,2)
(3,1,2,1,1)
(4,1,1,1,1)
The following pertain to this interpretation:
- The case of partitions is A000712, reverse A006330.
- Allowing any alternating sum gives A013777 (compositions of 4n).
- A011782 counts compositions of n.
- A034871 counts compositions of 2n with alternating sum 2k.
- A097805 counts compositions by alternating (or reverse-alternating) sum.
- A103919 counts partitions by sum and alternating sum (reverse: A344612).
- A345197 counts compositions by length and alternating sum.
(End)

Crossrefs

Programs

  • Magma
    [Binomial(4*n-1,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Table[Binomial[4 n - 1, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2015 *)
  • Maxima
    B(x):=sum(binomial(4*n-1,n-1)*3/(4*n-1)*x^n,n,1,30);
    taylor(x*diff(B(x),x,1)/B(x),x,0,20);
    
  • PARI
    a(n) = binomial(4*n-1,n); \\ Michel Marcus, Oct 06 2015

Formula

G.f.: A(x)=x*B'(x)/B(x), where B(x) if g.f. of A006632.
a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(3*n,k)).
a(n) = 3*A224274(n), for n > 0. - Michel Marcus, Oct 12 2015
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)/g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A005810 (k = 0), A052203 (k = 1), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)
a(n) = [x^n] 1/(1 - x)^(3*n). - Ilya Gutkovskiy, Oct 03 2017
a(n) = A071919(3n-1,n+1) = A097805(4n,n+1). - Gus Wiseman, Sep 28 2022
From Peter Bala, Feb 14 2024: (Start)
a(n) = (-1)^n * binomial(-3*n, n).
a(n) = hypergeom([1 - 3*n, -n], [1], 1).
The g.f. A(x) satisfies A(x/(1 + x)^4) = 1/(1 - 3*x). (End)
a(n) = Sum_{k = 0..n} binomial(2*n+k-1, k)*binomial(2*n-k-1, n-k). - Peter Bala, Sep 16 2024
G.f.: 1/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A224274 a(n) = binomial(4*n,n)/4.

Original entry on oeis.org

1, 7, 55, 455, 3876, 33649, 296010, 2629575, 23535820, 211915132, 1917334783, 17417133617, 158753389900, 1451182990950, 13298522298180, 122131734269895, 1123787895356412, 10358022441395860, 95615237915961100, 883829035553043580, 8179808679272664720, 75788358475481302185
Offset: 1

Views

Author

Gary Detlefs, Apr 02 2013

Keywords

Comments

In general, binomial(k*n,n)/k = binomial(k*n-1,n-1).
Sequences in the OEIS related to this identity are:
. C(2n,n) = A000984, C(2n,n)/2 = A001700;
. C(3n,n) = A005809, C(3n,n)/3 = A025174;
. C(4n,n) = A005810, C(4n,n)/4 = a(n);
. C(5n,n) = A001449, C(5n,n)/5 = A163456;
. C(6n,n) = A004355, C(6n,n)/6 is not in the OEIS.
Conjecture: a(n) == 1 (mod n^3) iff n is an odd prime.
It is known that a(p) == 1(mod p^3) for prime p >= 3. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015

Examples

			For n=2, binomial(4*n,n) = binomial(8,2) = 8*7/2 = 28, so a(2) = 28/4 = 7. - _Michael B. Porter_, Jul 12 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(4*n,n) div 4: n in [1..25]]; // Vincenzo Librandi, Jun 03 2015
  • Maple
    seq(binomial(4*n,n)/4, n=1..17);
  • Mathematica
    Table[Binomial[4 n, n]/4, {n, 30}] (* Vincenzo Librandi, Jun 03 2015 *)
  • PARI
    a(n) = binomial(4*n,n)/4; /* Joerg Arndt, Apr 02 2013 */
    

Formula

a(n) = binomial(4*n,n)/4 = A005810(n)/4.
a(n) = binomial(4*n-1,n-1).
G.f.: A(x) = B'(x)/B(x), where B(x) = 1 + x*B(x)^4 is g.f. of A002293. - Vladimir Kruchinin, Aug 13 2015
From Peter Bala, Oct 08 2015: (Start)
a(n) = 1/2*[x^n] (C(x)^2)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 22*x^3 + ... is the o.g.f. for A002293.
exp( 2*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 9*x^2 + 52*x^3 + ... is the o.g.f. for A069271. (End)
From Peter Bala, Nov 04 2015: (Start)
With an offset of 1, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A004331 (k = 4). (End)
a(n) = 1/5*[x^n] (1 + x)/(1 - x)^(3*n + 1) = 1/5*[x^n]( 1/C(-x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A227726. - Peter Bala, Jul 12 2016
a(n) ~ 2^(8*n-3/2)*3^(-3*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
O.g.f.: A(x) = f(x)/(1 - 3*f(x)), where f(x) = series reversion (x/(1 + x)^4) = x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ... is the o.g.f. of A002293 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/3)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+3)*n+k-1,k) = C(4*n,n)/4 and (1/4)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-4)*n+k-1,k) = C(4*n,n)/4, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(5*n-k-1,2*n-k)*binomial(3*n+k-1,k) = binomial(4*n,n)/4. - Peter Bala, Mar 09 2022
a(n) = [x^n] G(x)^n, where G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... is the g.f. of A001764. - Peter Bala, Oct 17 2024

A052203 a(n) = (4n+1)*binomial(4n,n)/(3n+1).

Original entry on oeis.org

1, 5, 36, 286, 2380, 20349, 177100, 1560780, 13884156, 124403620, 1121099408, 10150595910, 92263734836, 841392966470, 7694644696200, 70539987842520, 648045936942300, 5964720367660956, 54991682779774384, 507749884105448600, 4694436188839116720
Offset: 0

Views

Author

Barry E. Williams, Jan 28 2000

Keywords

Comments

Central terms of the triangles in A122366 and A111418. - Reinhard Zumkeller, Aug 30 2006 and Mar 14 2014
a(n) is the number of paths from (0,0) to (4n,n), taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

Crossrefs

Programs

  • Haskell
    a052203 n = a122366 (2 * n) n  -- Reinhard Zumkeller, Mar 14 2014
    
  • Magma
    [Binomial(4*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
    
  • Mathematica
    Table[Binomial[4 n + 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
  • PARI
    vector(30, n, n--; (4*n+1)*binomial(4*n,n)/(3*n+1)) \\ Altug Alkan, Nov 05 2015

Formula

a(n) = C(4n+1, n); a(n) is asymptotic to c/sqrt(n)*(256/27)^n with c=0.614... - Benoit Cloitre, Jan 27 2003 [c = 2^(5/2)/(3^(3/2)*sqrt(Pi)) = 0.61421182128... - Vaclav Kotesovec, Feb 14 2019]
G.f.: g^2/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
G.f.: hypergeom([1/2, 3/4, 5/4], [2/3, 4/3], (256/27)*x). - Robert Israel, Aug 07 2014
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)*g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)
a(n) = [x^n] 1/(1 - x)^(3*n+2). - Ilya Gutkovskiy, Oct 03 2017
a(n) = Sum_{k = 0..n} binomial(2*n+k+1, k)*binomial(2*n-k-1, n-k). - Peter Bala, Sep 17 2024

Extensions

More terms from James Sellers, Jan 31 2000

A004331 Binomial coefficient C(4n,n-1).

Original entry on oeis.org

1, 8, 66, 560, 4845, 42504, 376740, 3365856, 30260340, 273438880, 2481256778, 22595200368, 206379406870, 1889912732400, 17345898649800, 159518999862720, 1469568786235308, 13559593014190944, 125288932441604200
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Maple
    #A004331
    seq(binomial(4*n - 1,n), n = 0..20);
  • Mathematica
    a[n_] := Binomial[4*n, n - 1]; Array[a, 19] (* Amiram Eldar, May 09 2020 *)
  • PARI
    vector(30, n, binomial(4*n, n-1)) \\ Altug Alkan, Nov 05 2015

Formula

G.f.: (g^2-g)/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
With an offset of 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A224274 (k = 3). - Peter Bala, Nov 04 2015
D-finite with recurrence 3*(n-1)*(3*n-1)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 19 2025

A264773 Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.

Original entry on oeis.org

1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0

Views

Author

Peter Bala, Nov 30 2015

Keywords

Comments

Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.

Examples

			Triangle begins
  n\k |       0      1     2    3   4   5   6   7
------+-----------------------------------------------
   0  |       1
   1  |       4      1
   2  |      28      5     1
   3  |     220     36     6    1
   4  |    1820    286    45    7   1
   5  |   15504   2380   364   55   8   1
   6  |  134596  20349  3060  455  66   9   1
   7  | 1184040 177100 26334 3876 560  78  10   1
...
		

Crossrefs

A005810 (column 0), A052203 (column 1), A257633 (column 2), A224274 (column 3), A004331 (column 4). Cf. A002293, A007318, A092392 (C(2n-k,n)), A119301 (C(3n-k,n-k)), A264772, A264774.

Programs

  • Magma
    /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
    seq(seq(A264773(n,k), k = 0..n), n = 0..10);
  • Mathematica
    A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
    Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)

Formula

T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.
Showing 1-5 of 5 results.