cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022087 Fibonacci sequence beginning 0, 4.

Original entry on oeis.org

0, 4, 4, 8, 12, 20, 32, 52, 84, 136, 220, 356, 576, 932, 1508, 2440, 3948, 6388, 10336, 16724, 27060, 43784, 70844, 114628, 185472, 300100, 485572, 785672, 1271244, 2056916, 3328160, 5385076, 8713236, 14098312, 22811548, 36909860, 59721408, 96631268
Offset: 0

Views

Author

Keywords

Comments

For n > 1, this sequence gives the number of binary strings of length n that do not contain 0000, 0101, 1010, or 1111 as contiguous substrings (see A230127). - Nathaniel Johnston, Oct 11 2013

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 18.

Crossrefs

Cf. similar sequences listed in A258160.
Cf. sequences of the form m*Fibonacci listed in A022086.

Programs

Formula

a(n) = 4*F(n) = F(n-2) + F(n) + F(n+2), where F = A000045.
a(n) = round( phi^n*(8*phi-4)/5 ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+2,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 4*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = F(n+9) - 17*F(n+3), where F=A000045. - Manuel Valdivia, Dec 15 2009
G.f.: Q(0) -1, where Q(k) = 1 + x^2 + (4*k+5)*x - x*(4*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n) = Fibonacci(n+3) - Fibonacci(n-3), where Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015

A022091 Fibonacci sequence beginning 0, 8.

Original entry on oeis.org

0, 8, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1152, 1864, 3016, 4880, 7896, 12776, 20672, 33448, 54120, 87568, 141688, 229256, 370944, 600200, 971144, 1571344, 2542488, 4113832, 6656320, 10770152, 17426472, 28196624, 45623096, 73819720, 119442816
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.

Crossrefs

Sequences of the form m*Fibonacci are listed in A022086.

Programs

Formula

a(n) = round( (16phi-8)/5 phi^n) (works for n>4). - Thomas Baruchel, Sep 08 2004
a(n) = 8*F(n) = F(n+4) + F(n) + F(n-4) for n>3, where F=A000045.
G.f.: 8*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008

A022379 Fibonacci sequence beginning 3, 9.

Original entry on oeis.org

3, 9, 12, 21, 33, 54, 87, 141, 228, 369, 597, 966, 1563, 2529, 4092, 6621, 10713, 17334, 28047, 45381, 73428, 118809, 192237, 311046, 503283, 814329, 1317612, 2131941, 3449553, 5581494, 9031047, 14612541, 23643588, 38256129, 61899717, 100155846, 162055563, 262211409
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A258160.

Programs

Formula

G.f.: (3 + 6*x)/(1 - x - x^2). - Philippe Deléham, Nov 19 2008
a(n+2) = 3*L(n+3) = L(n) + 4*L(n+1) + 2*L(n+2), where L=A000032. - J. M. Bergot, Oct 21 2012
a(n) = Fibonacci(n+4) - Fibonacci(n-4), where n>0 and Fibonacci(-3..-1) = 2,-1,1. - Bruno Berselli, May 22 2015
a(n) = L(n+4) + L(n-4) - 4*L(n) for n>0. - Bruno Berselli, Dec 29 2016

Extensions

More terms from Bruno Berselli, May 22 2015

A022345 Fibonacci sequence beginning 0, 11.

Original entry on oeis.org

0, 11, 11, 22, 33, 55, 88, 143, 231, 374, 605, 979, 1584, 2563, 4147, 6710, 10857, 17567, 28424, 45991, 74415, 120406, 194821, 315227, 510048, 825275, 1335323, 2160598, 3495921, 5656519, 9152440, 14808959, 23961399, 38770358, 62731757, 101502115, 164233872
Offset: 0

Views

Author

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.

Crossrefs

Cf. A000045.
Cf. similar sequences listed in A258160.

Programs

  • Magma
    [11*Fibonacci(n): n in [0..40]]; // Bruno Berselli, May 22 2015
    
  • Mathematica
    Table[11 Fibonacci(n), {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(11*x/(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017

Formula

a(n) = 11*F(n) = F(n+4) + F(n+2) + F(n) + F(n-2) + F(n-4) with n > 3 and F = A000045.
G.f.: 11*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = Fibonacci(n+5) - Fibonacci(n-5), where Fibonacci(-5..-1) = 5, -3, 2, -1, 1. - Bruno Berselli, May 22 2015

Extensions

More terms from Bruno Berselli, May 22 2015

A022352 Fibonacci sequence beginning 0, 18.

Original entry on oeis.org

0, 18, 18, 36, 54, 90, 144, 234, 378, 612, 990, 1602, 2592, 4194, 6786, 10980, 17766, 28746, 46512, 75258, 121770, 197028, 318798, 515826, 834624, 1350450, 2185074, 3535524, 5720598, 9256122, 14976720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A258160.
Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154.

Programs

  • Mathematica
    a={};b=0;c=18;AppendTo[a, b];AppendTo[a, c];Do[b=b+c;AppendTo[a, b];c=b+c;AppendTo[a, c], {n, 4!}];a (* Vladimir Joseph Stephan Orlovsky, Sep 17 2008 *)
    LinearRecurrence[{1,1},{0,18},40] (* or *) Table[9(LucasL[n]- Fibonacci[n]),{n,40}] (* Harvey P. Dale, Oct 09 2013 *)
  • PARI
    for(n=0,50, print1(18*fibonacci(n), ", ")) \\ G. C. Greubel, Aug 26 2017

Formula

G.f.: 18*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 9*(Lucas(n) - Fibonacci(n)). - Harvey P. Dale, Oct 09 2013

A022363 Fibonacci sequence beginning 0, 29.

Original entry on oeis.org

0, 29, 29, 58, 87, 145, 232, 377, 609, 986, 1595, 2581, 4176, 6757, 10933, 17690, 28623, 46313, 74936, 121249, 196185, 317434, 513619, 831053, 1344672, 2175725, 3520397, 5696122, 9216519, 14912641, 24129160, 39041801, 63170961, 102212762, 165383723
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045.
Cf. similar sequences listed in A258160.

Programs

  • Magma
    [29*Fibonacci(n): n in [0..40]]; // Bruno Berselli, May 22 2015
    
  • Mathematica
    Table[29 Fibonacci(n), {n, 0, 40}] (* Bruno Berselli, May 22 2015 *)
    LinearRecurrence[{1,1},{0,29},40] (* Harvey P. Dale, Feb 13 2023 *)
  • PARI
    for(n=0,50, print1(29*fibonacci(n), ", ")) \\ G. C. Greubel, Aug 26 2017

Formula

G.f.: 29*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = Fibonacci(n+7) - Fibonacci(n-7), where Fibonacci(-7..-1) = 13, -8, 5, -3, 2, -1, 1. - Bruno Berselli, May 22 2015
a(n) = a(n-1) + a(n-2) for n>=2, with a(0)=0, a(1)=29. - Wesley Ivan Hurt, May 12 2023

Extensions

More terms from Bruno Berselli, May 22 2015
Showing 1-6 of 6 results.