cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258851 The pi-based arithmetic derivative of n: a(p) = pi(p) for p prime, a(u*v) = a(u)*v + u*a(v), where pi = A000720.

Original entry on oeis.org

0, 0, 1, 2, 4, 3, 7, 4, 12, 12, 11, 5, 20, 6, 15, 19, 32, 7, 33, 8, 32, 26, 21, 9, 52, 30, 25, 54, 44, 10, 53, 11, 80, 37, 31, 41, 84, 12, 35, 44, 84, 13, 73, 14, 64, 87, 41, 15, 128, 56, 85, 55, 76, 16, 135, 58, 116, 62, 49, 17, 136, 18, 53, 120, 192, 69, 107
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2015

Keywords

Comments

The pi-based variant of the arithmetic derivative of n (A003415).

Crossrefs

Column k=1 of A258850, A258997.
First differences give A258863.
Partial sums give A258864.

Programs

  • Maple
    with(numtheory):
    a:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
    seq(a(n), n=0..100);
  • Mathematica
    a[n_] := n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]; a[0] = 0; Array[a, 100, 0] (* Jean-François Alcover, Apr 24 2016 *)
  • PARI
    A258851(n)=n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i]) \\ M. F. Hasler, Jul 13 2015
    
  • Scheme
    (define (A258851 n) (if (<= n 1) 0 (+ (* (A055396 n) (A032742 n)) (* (A020639 n) (A258851 (A032742 n)))))) ;; Antti Karttunen, Mar 07 2017

Formula

a(n) = n * Sum e_j*pi(p_j)/p_j for n = Product p_j^e_j with pi = A000720.
a(A258861(n)) = n; A258861 = pi-based antiderivative of n.
a(a(A258862(n))) = n; A258862 = second pi-based antiderivative of n.
a(a(a(A258995(n)))) = n; A258995 = third pi-based antiderivative of n.
a(0) = a(0*p) = a(0)*p + 0*a(p) = a(0)*p for all p => a(0) = 0.
a(p) = a(1*p) = a(1)*p + 1*a(p) = a(1)*p + a(p) for all p => a(1) = 0.
a(u^v) = v * u^(v-1) * a(u).

A018215 a(n) = n*4^n.

Original entry on oeis.org

0, 4, 32, 192, 1024, 5120, 24576, 114688, 524288, 2359296, 10485760, 46137344, 201326592, 872415232, 3758096384, 16106127360, 68719476736, 292057776128, 1236950581248, 5222680231936, 21990232555520, 92358976733184, 387028092977152, 1618481116086272
Offset: 0

Views

Author

N. J. A. Sloane, Peter Winkler (pw(AT)bell-labs.com)

Keywords

Comments

Bisection of A001787. That is, a(n) = A001787(2*n). - Graeme McRae, Jul 12 2006
All numbers of the form n*4^n+(4^n-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity n*4^n+(4^n-1)/3 = 4*(4*(..(4*(4*n+1)+1)..)+1)+1. - Artur Jasinski, Nov 12 2007

Crossrefs

Row n=4 of A258997.

Programs

Formula

G.f.: 4*x/(1-4*x)^2.
E.g.f.: 4*x*exp(4*x).
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(4/3) = A083679.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5/4). (End)

A212697 a(n) = 2*n*3^(n-1).

Original entry on oeis.org

2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1

Views

Author

Stanislav Sykora, May 24 2012

Keywords

Comments

Main transitions in systems of n particles with spin 1.
Consider the set S of all b^n numbers which have n digits in base b. Define as "main transition" a pair (x,y) of elements of S such that x and y differ in base b in only one digit which in y exceeds that in x by 1. This particular sequence a(n) gives the number of such transitions for the case b=3.
The terminology originates from quantum theory of coupled spin systems (such as in magnetic resonance) with n particles, each with spin S = (b-1)/2. Then the i-th digit's value in base b can be intended as a label for the b = 2S+1 quantum states of the i-th particle. The most intense main quantum transitions then correspond to the above definition. Due to continuity, the correspondence holds regardless of how strongly coupled are the particles among themselves.
a(n) is the number of functions from {1,2,...,n} into {1,2,3} with a specially designated element of the domain that is restricted to be mapped into {1,2}. Hence the e.g.f. is 2*x*exp(x)^3. - Geoffrey Critzer, Mar 01 2015
a(n) is the distance spectral radius of the dimension-regular generalized recursive circulant graph (commonly known as multiplicative circulant graph) of order 3^n. - John Rafael M. Antalan, Sep 25 2020

Examples

			n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
		

References

  • M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
  • J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.

Crossrefs

Cf. A001787 (b = 2).
Cf. A212698, A212699, A212700, A212701, A212702, A212703, A212704 (b = 4, 5, 6, 7, 8, 9, 10).
Row n=3 of A258997.

Programs

  • GAP
    List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
  • Magma
    [2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
    
  • Maple
    A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
  • Mathematica
    Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
    Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
  • PARI
    mtrans(n,b) = n*(b-1)*b^(n-1);
    for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
    
  • Sage
    [2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
    

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=3.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 2*x/(1-3*x)^2.
a(n) = 2*A027471(n+1). (End)
a(n) = A005843(n)*A000244(n-1). - Omar E. Pol, Jan 21 2014
a(n) = Sum_{j=1..n} binomial(n,j)*j*2^j. - Geoffrey Critzer, Mar 01 2015
E.g.f.: 2*x*exp(3*x). - G. C. Greubel, Jun 08 2019

A230539 a(n) = 3*n*2^(3*n-1).

Original entry on oeis.org

0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2013

Keywords

Comments

Arithmetic derivative of 8^n: a(n) = A003415(8^n).
Sum of reciprocals of a(n), for n>0: (2/3)*log(8/7).

Crossrefs

Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), this sequence, A230540 (k=9), A085708 (k=10), A081127 (k=11).
Row n=8 of A258997.

Programs

  • Magma
    [3*n*2^(3*n-1): n in [0..20]];
    
  • Maple
    A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    Table[3 n 2^(3 n - 1), {n,0,20}]
    LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013

Formula

G.f.: 12*x/(1-8*x)^2.
a(n) = 12*A053539(n).

A258846 The pi-based arithmetic derivative of n^n.

Original entry on oeis.org

0, 0, 4, 54, 1024, 9375, 326592, 3294172, 201326592, 4649045868, 110000000000, 1426558353055, 178322008965120, 1817250639553518, 166680102383370240, 8319983917236328125, 590295810358705651712, 5790681833204357349239, 1298431466484785739988992
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2015

Keywords

Crossrefs

Main diagonal of A258997.

Programs

  • Maple
    with(numtheory):
    a:= n-> n^(n+1)*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := n^(n+1)*Sum[i[[2]]*PrimePi[i[[1]]]/i[[1]], {i, FactorInteger[n]}];
    a[0] = 0; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = A258851(A000312(n)).
a(n) = n^n * A258851(n).
a(n) = A258997(n,n).
Showing 1-5 of 5 results.